MySQL HeatWave User Guide

Abstract

This document describes how to use MySQL HeatWave. It covers how to load data, run queries, optimize analytics workloads, and use HeatWave machine learning capabilities.

For information about creating and managing HeatWave Clusters on Oracle Cloud Infrastructure (OCI), see the MySQL Database Service documentation.

For information about creating and managing HeatWave Clusters on Amazon Web Services (AWS), see the MySQL HeatWave on AWS Service Guide.

For information about creating and managing HeatWave Clusters on Oracle Database Service for Azure (ODSA), see the Oracle Database Service for Azure documentation.

For MySQL Server documentation, refer to the MySQL Reference Manual.

For information about the latest MySQL HeatWave features and updates, refer to the HeatWave Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL users.

Document generated on: 2023-01-27 (revision: 74908)

Table of Contents

Preface and Legal Notices
1 Overview
1.1 HeatWave Architectural Features
1.2 MySQL Autopilot
2 HeatWave
2.1 Before You Begin
2.2 Loading Data
2.2.1 Prerequisites
2.2.2 Loading Data Manually
2.2.3 Loading Data Using Auto Parallel Load
2.2.4 Monitoring Load Progress
2.2.5 Checking Load Status
2.2.6 Data Compression
2.2.7 Change Propagation
2.3 Running Queries
2.3.1 Query Prerequisites
2.3.2 Running Queries
2.3.3 Auto Scheduling
2.3.4 Auto Query Plan Improvement
2.3.5 Debugging Queries
2.3.6 Query Runtimes and Estimates
2.3.7 CREATE TABLE ... SELECT Statements
2.3.8 INSERT ... SELECT Statements
2.3.9 Using Views
2.4 Modifying Tables
2.5 Unloading Tables
2.6 Table Load and Query Example
2.7 Workload Optimization
2.7.1 Encoding String Columns
2.7.2 Defining Data Placement Keys
2.7.3 Workload Optimization using Advisor
2.8 Best Practices
2.8.1 Preparing Data
2.8.2 Provisioning
2.8.3 Importing Data into the MySQL DB System
2.8.4 Inbound Replication
2.8.5 Loading Data
2.8.6 Auto Encoding and Auto Data Placement
2.8.7 Running Queries
2.8.8 Monitoring
2.8.9 Reloading Data
2.9 Supported Data Types
2.10 Supported SQL Modes
2.11 Supported Functions and Operators
2.11.1 Aggregate Functions
2.11.2 Arithmetic Operators
2.11.3 Cast Functions and Operators
2.11.4 Comparison Functions and Operators
2.11.5 Control Flow Functions and Operators
2.11.6 Data Masking and De-Identification Functions
2.11.7 Date and Time Functions
2.11.8 Encryption and Compression Functions
2.11.9 Logical Operators
2.11.10 Mathematical Functions
2.11.11 String Functions and Operators
2.11.12 Window Functions
2.12 String Column Encoding Reference
2.12.1 Variable-length Encoding
2.12.2 Dictionary Encoding
2.12.3 Column Limits
2.13 Troubleshooting
2.14 Metadata Queries
2.14.1 Secondary Engine Definitions
2.14.2 Excluded Columns
2.14.3 String Column Encoding
2.14.4 Data Placement
2.15 Limitations
2.15.1 Change Propagation Limitations
2.15.2 Data Type Limitations
2.15.3 Functions and Operator Limitations
2.15.4 Index and Optimizer Hints
2.15.5 Join Limitations
2.15.6 Variable Limitations
2.15.7 Other Limitations
3 HeatWave AutoML
3.1 HeatWave AutoML Features
3.1.1 HeatWave AutoML Supervised Learning
3.1.2 HeatWave AutoML Ease of Use
3.1.3 HeatWave AutoML Workflow
3.1.4 Oracle AutoML
3.2 Before You Begin
3.3 Getting Started
3.4 Preparing Data
3.4.1 Labeled Data
3.4.2 Unlabeled Data
3.4.3 General Data Requirements
3.4.4 Example Data
3.5 Training a Model
3.5.1 Advanced ML_TRAIN Options
3.5.2 ML_TRAIN progress tracking
3.6 Training Explainers
3.7 Predictions
3.7.1 Row Predictions
3.7.2 Table Predictions
3.8 Explanations
3.8.1 Row Explanations
3.8.2 Table Explanations
3.9 Forecasting
3.9.1 Training a Forecasting Model
3.9.2 Using a Forecasting Model
3.10 Managing Models
3.10.1 The Model Catalog
3.10.2 Importing ONNX Models
3.10.3 Loading Models
3.10.4 Unloading Models
3.10.5 Viewing Models
3.10.6 Scoring Models
3.10.7 Model Explanations
3.10.8 Model Handles
3.10.9 Deleting Models
3.10.10 Sharing Models
3.11 HeatWave AutoML Routines
3.11.1 ML_TRAIN
3.11.2 ML_EXPLAIN
3.11.3 ML_MODEL_IMPORT
3.11.4 ML_PREDICT_ROW
3.11.5 ML_PREDICT_TABLE
3.11.6 ML_EXPLAIN_ROW
3.11.7 ML_EXPLAIN_TABLE
3.11.8 ML_SCORE
3.11.9 ML_MODEL_LOAD
3.11.10 ML_MODEL_UNLOAD
3.12 Supported Data Types
3.13 HeatWave AutoML Error Messages
3.14 Limitations
4 System and Status Variables
4.1 System Variables
4.2 Status Variables
5 HeatWave Performance and Monitoring
5.1 Auto Shape Prediction
5.2 HeatWave Autopilot Report Table
5.3 HeatWave Monitoring
5.3.1 HeatWave Node Status Monitoring
5.3.2 HeatWave Memory Usage Monitoring
5.3.3 Data Load Progress and Status Monitoring
5.3.4 Change Propagation Monitoring
5.3.5 Query Execution Monitoring
5.3.6 Query History and Statistics Monitoring
5.3.7 Scanned Data Monitoring
5.4 HeatWave AutoML Monitoring
5.5 HeatWave Performance Schema Tables
5.5.1 The rpd_column_id Table
5.5.2 The rpd_columns Table
5.5.3 The rpd_exec_stats Table
5.5.4 The rpd_nodes Table
5.5.5 The rpd_preload_stats Table
5.5.6 The rpd_query_stats Table
5.5.7 The rpd_table_id Table
5.5.8 The rpd_tables Table
6 HeatWave Quickstarts
6.1 tpch Analytics Quickstart
6.1.1 tpch Prerequisites
6.1.2 Generating tpch Sample Data
6.1.3 Creating the tpch Sample Database and Importing Data
6.1.4 Loading tpch Data Into HeatWave
6.1.5 Running tpch Queries
6.1.6 Additional tpch Queries
6.1.7 Unloading tpch Tables
6.2 AirportDB Analytics Quickstart
6.2.1 AirportDB Prerequisites
6.2.2 Installing AirportDB
6.2.3 Loading AirportDB into HeatWave
6.2.4 Running AirportDB Queries
6.2.5 Additional AirportDB Queries
6.2.6 Unloading AirportDB Tables
6.3 Iris Data Set Machine Learning Quickstart