Documentation Home
MySQL 8.4 Reference Manual
Related Documentation Download this Manual
PDF (US Ltr) - 39.9Mb
PDF (A4) - 40.0Mb
Man Pages (TGZ) - 258.4Kb
Man Pages (Zip) - 365.5Kb
Info (Gzip) - 4.0Mb
Info (Zip) - 4.0Mb

MySQL 8.4 Reference Manual  /  Optimization

Chapter 10 Optimization

Table of Contents

10.1 Optimization Overview
10.2 Optimizing SQL Statements
10.2.1 Optimizing SELECT Statements
10.2.2 Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions
10.2.3 Optimizing INFORMATION_SCHEMA Queries
10.2.4 Optimizing Performance Schema Queries
10.2.5 Optimizing Data Change Statements
10.2.6 Optimizing Database Privileges
10.2.7 Other Optimization Tips
10.3 Optimization and Indexes
10.3.1 How MySQL Uses Indexes
10.3.2 Primary Key Optimization
10.3.3 SPATIAL Index Optimization
10.3.4 Foreign Key Optimization
10.3.5 Column Indexes
10.3.6 Multiple-Column Indexes
10.3.7 Verifying Index Usage
10.3.8 InnoDB and MyISAM Index Statistics Collection
10.3.9 Comparison of B-Tree and Hash Indexes
10.3.10 Use of Index Extensions
10.3.11 Optimizer Use of Generated Column Indexes
10.3.12 Invisible Indexes
10.3.13 Descending Indexes
10.3.14 Indexed Lookups from TIMESTAMP Columns
10.4 Optimizing Database Structure
10.4.1 Optimizing Data Size
10.4.2 Optimizing MySQL Data Types
10.4.3 Optimizing for Many Tables
10.4.4 Internal Temporary Table Use in MySQL
10.4.5 Limits on Number of Databases and Tables
10.4.6 Limits on Table Size
10.4.7 Limits on Table Column Count and Row Size
10.5 Optimizing for InnoDB Tables
10.5.1 Optimizing Storage Layout for InnoDB Tables
10.5.2 Optimizing InnoDB Transaction Management
10.5.3 Optimizing InnoDB Read-Only Transactions
10.5.4 Optimizing InnoDB Redo Logging
10.5.5 Bulk Data Loading for InnoDB Tables
10.5.6 Optimizing InnoDB Queries
10.5.7 Optimizing InnoDB DDL Operations
10.5.8 Optimizing InnoDB Disk I/O
10.5.9 Optimizing InnoDB Configuration Variables
10.5.10 Optimizing InnoDB for Systems with Many Tables
10.6 Optimizing for MyISAM Tables
10.6.1 Optimizing MyISAM Queries
10.6.2 Bulk Data Loading for MyISAM Tables
10.6.3 Optimizing REPAIR TABLE Statements
10.7 Optimizing for MEMORY Tables
10.8 Understanding the Query Execution Plan
10.8.1 Optimizing Queries with EXPLAIN
10.8.2 EXPLAIN Output Format
10.8.3 Extended EXPLAIN Output Format
10.8.4 Obtaining Execution Plan Information for a Named Connection
10.8.5 Estimating Query Performance
10.9 Controlling the Query Optimizer
10.9.1 Controlling Query Plan Evaluation
10.9.2 Switchable Optimizations
10.9.3 Optimizer Hints
10.9.4 Index Hints
10.9.5 The Optimizer Cost Model
10.9.6 Optimizer Statistics
10.10 Buffering and Caching
10.10.1 InnoDB Buffer Pool Optimization
10.10.2 The MyISAM Key Cache
10.10.3 Caching of Prepared Statements and Stored Programs
10.11 Optimizing Locking Operations
10.11.1 Internal Locking Methods
10.11.2 Table Locking Issues
10.11.3 Concurrent Inserts
10.11.4 Metadata Locking
10.11.5 External Locking
10.12 Optimizing the MySQL Server
10.12.1 Optimizing Disk I/O
10.12.2 Using Symbolic Links
10.12.3 Optimizing Memory Use
10.13 Measuring Performance (Benchmarking)
10.13.1 Measuring the Speed of Expressions and Functions
10.13.2 Using Your Own Benchmarks
10.13.3 Measuring Performance with performance_schema
10.14 Examining Server Thread (Process) Information
10.14.1 Accessing the Process List
10.14.2 Thread Command Values
10.14.3 General Thread States
10.14.4 Replication Source Thread States
10.14.5 Replication I/O (Receiver) Thread States
10.14.6 Replication SQL Thread States
10.14.7 Replication Connection Thread States
10.14.8 NDB Cluster Thread States
10.14.9 Event Scheduler Thread States

This chapter explains how to optimize MySQL performance and provides examples. Optimization involves configuring, tuning, and measuring performance, at several levels. Depending on your job role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL statements, entire applications, a single database server, or multiple networked database servers. Sometimes you can be proactive and plan in advance for performance, while other times you might troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage can also improve scalability, allowing the database to handle more load without slowing down.