InnoDB
provides a configurable locking
mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with
AUTO_INCREMENT
columns. To use the
AUTO_INCREMENT
mechanism with an
InnoDB
table, an
AUTO_INCREMENT
column must be defined as the
first or only column of some index such that it is possible to
perform the equivalent of an indexed SELECT
MAX(
lookup on the
table to obtain the maximum column value. The index is not
required to be a ai_col
)PRIMARY KEY
or
UNIQUE
, but to avoid duplicate values in the
AUTO_INCREMENT
column, those index types are
recommended.
This section describes the AUTO_INCREMENT
lock
modes, usage implications of different
AUTO_INCREMENT
lock mode settings, and how
InnoDB
initializes the
AUTO_INCREMENT
counter.
This section describes the AUTO_INCREMENT
lock modes used to generate auto-increment values, and how each
lock mode affects replication. The auto-increment lock mode is
configured at startup using the
innodb_autoinc_lock_mode
variable.
The following terms are used in describing
innodb_autoinc_lock_mode
settings:
“
INSERT
-like” statementsAll statements that generate new rows in a table, including
INSERT
,INSERT ... SELECT
,REPLACE
,REPLACE ... SELECT
, andLOAD DATA
. Includes “simple-inserts”, “bulk-inserts”, and “mixed-mode” inserts.“Simple inserts”
Statements for which the number of rows to be inserted can be determined in advance (when the statement is initially processed). This includes single-row and multiple-row
INSERT
andREPLACE
statements that do not have a nested subquery, but notINSERT ... ON DUPLICATE KEY UPDATE
.“Bulk inserts”
Statements for which the number of rows to be inserted (and the number of required auto-increment values) is not known in advance. This includes
INSERT ... SELECT
,REPLACE ... SELECT
, andLOAD DATA
statements, but not plainINSERT
.InnoDB
assigns new values for theAUTO_INCREMENT
column one at a time as each row is processed.“Mixed-mode inserts”
These are “simple insert” statements that specify the auto-increment value for some (but not all) of the new rows. An example follows, where
c1
is anAUTO_INCREMENT
column of tablet1
:INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');
Another type of “mixed-mode insert” is
INSERT ... ON DUPLICATE KEY UPDATE
, which in the worst case is in effect anINSERT
followed by aUPDATE
, where the allocated value for theAUTO_INCREMENT
column may or may not be used during the update phase.
There are three possible settings for the
innodb_autoinc_lock_mode
variable. The settings are 0, 1, or 2, for
“traditional”, “consecutive”, or
“interleaved” lock mode, respectively.
innodb_autoinc_lock_mode = 0
(“traditional” lock mode)The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode
variable was introduced. The traditional lock mode option is provided for backward compatibility, performance testing, and working around issues with “mixed-mode inserts”, due to possible differences in semantics.In this lock mode, all “INSERT-like” statements obtain a special table-level
AUTO-INC
lock for inserts into tables withAUTO_INCREMENT
columns. This lock is normally held to the end of the statement (not to the end of the transaction) to ensure that auto-increment values are assigned in a predictable and repeatable order for a given sequence ofINSERT
statements, and to ensure that auto-increment values assigned by any given statement are consecutive.In the case of statement-based replication, this means that when an SQL statement is replicated on a replica server, the same values are used for the auto-increment column as on the source server. The result of execution of multiple
INSERT
statements is deterministic, and the replica reproduces the same data as on the source. If auto-increment values generated by multipleINSERT
statements were interleaved, the result of two concurrentINSERT
statements would be nondeterministic, and could not reliably be propagated to a replica server using statement-based replication.To make this clear, consider an example that uses this table:
CREATE TABLE t1 ( c1 INT(11) NOT NULL AUTO_INCREMENT, c2 VARCHAR(10) DEFAULT NULL, PRIMARY KEY (c1) ) ENGINE=InnoDB;
Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT
column. One transaction is using anINSERT ... SELECT
statement that inserts 1000 rows, and another is using a simpleINSERT
statement that inserts one row:Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ... Tx2: INSERT INTO t1 (c2) VALUES ('xxx');
InnoDB
cannot tell in advance how many rows are retrieved from theSELECT
in theINSERT
statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds. With a table-level lock, held to the end of the statement, only oneINSERT
statement referring to tablet1
can execute at a time, and the generation of auto-increment numbers by different statements is not interleaved. The auto-increment values generated by the Tx1INSERT ... SELECT
statement are consecutive, and the (single) auto-increment value used by theINSERT
statement in Tx2 is either smaller or larger than all those used for Tx1, depending on which statement executes first.As long as the SQL statements execute in the same order when replayed from the binary log (when using statement-based replication, or in recovery scenarios), the results are the same as they were when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make
INSERT
statements using auto-increment safe for use with statement-based replication. However, those table-level locks limit concurrency and scalability when multiple transactions are executing insert statements at the same time.In the preceding example, if there were no table-level lock, the value of the auto-increment column used for the
INSERT
in Tx2 depends on precisely when the statement executes. If theINSERT
of Tx2 executes while theINSERT
of Tx1 is running (rather than before it starts or after it completes), the specific auto-increment values assigned by the twoINSERT
statements are nondeterministic, and may vary from run to run.Under the consecutive lock mode,
InnoDB
can avoid using table-levelAUTO-INC
locks for “simple insert” statements where the number of rows is known in advance, and still preserve deterministic execution and safety for statement-based replication.If you are not using the binary log to replay SQL statements as part of recovery or replication, the interleaved lock mode can be used to eliminate all use of table-level
AUTO-INC
locks for even greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers assigned by a statement and potentially having the numbers assigned by concurrently executing statements interleaved.innodb_autoinc_lock_mode = 1
(“consecutive” lock mode)This is the default lock mode. In this mode, “bulk inserts” use the special
AUTO-INC
table-level lock and hold it until the end of the statement. This applies to allINSERT ... SELECT
,REPLACE ... SELECT
, andLOAD DATA
statements. Only one statement holding theAUTO-INC
lock can execute at a time. If the source table of the bulk insert operation is different from the target table, theAUTO-INC
lock on the target table is taken after a shared lock is taken on the first row selected from the source table. If the source and target of the bulk insert operation are the same table, theAUTO-INC
lock is taken after shared locks are taken on all selected rows.“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC
locks by obtaining the required number of auto-increment values under the control of a mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the statement completes. No table-levelAUTO-INC
lock is used unless anAUTO-INC
lock is held by another transaction. If another transaction holds anAUTO-INC
lock, a “simple insert” waits for theAUTO-INC
lock, as if it were a “bulk insert”.This lock mode ensures that, in the presence of
INSERT
statements where the number of rows is not known in advance (and where auto-increment numbers are assigned as the statement progresses), all auto-increment values assigned by any “INSERT
-like” statement are consecutive, and operations are safe for statement-based replication.Simply put, this lock mode significantly improves scalability while being safe for use with statement-based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any given statement are consecutive. There is no change in semantics compared to “traditional” mode for any statement that uses auto-increment, with one important exception.
The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT
column for some, but not all, rows in a multiple-row “simple insert”. For such inserts,InnoDB
allocates more auto-increment values than the number of rows to be inserted. However, all values automatically assigned are consecutively generated (and thus higher than) the auto-increment value generated by the most recently executed previous statement. “Excess” numbers are lost.innodb_autoinc_lock_mode = 2
(“interleaved” lock mode)In this lock mode, no “
INSERT
-like” statements use the table-levelAUTO-INC
lock, and multiple statements can execute at the same time. This is the fastest and most scalable lock mode, but it is not safe when using statement-based replication or recovery scenarios when SQL statements are replayed from the binary log.In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing across all concurrently executing “
INSERT
-like” statements. However, because multiple statements can be generating numbers at the same time (that is, allocation of numbers is interleaved across statements), the values generated for the rows inserted by any given statement may not be consecutive.If the only statements executing are “simple inserts” where the number of rows to be inserted is known ahead of time, there are no gaps in the numbers generated for a single statement, except for “mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-increment values assigned by any given statement.
Using auto-increment with replication
If you are using statement-based replication, set
innodb_autoinc_lock_mode
to 0 or 1 and use the same value on the source and its replicas. Auto-increment values are not ensured to be the same on the replicas as on the source if you useinnodb_autoinc_lock_mode
= 2 (“interleaved”) or configurations where the source and replicas do not use the same lock mode.If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe, since row-based replication is not sensitive to the order of execution of the SQL statements (and the mixed format uses row-based replication for any statements that are unsafe for statement-based replication).
“Lost” auto-increment values and sequence gaps
In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot be rolled back, whether or not the “
INSERT
-like” statement is completed, and whether or not the containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in the values stored in anAUTO_INCREMENT
column of a table.Specifying NULL or 0 for the
AUTO_INCREMENT
columnIn all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the
AUTO_INCREMENT
column in anINSERT
,InnoDB
treats the row as if the value was not specified and generates a new value for it.Assigning a negative value to the
AUTO_INCREMENT
columnIn all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if you assign a negative value to the
AUTO_INCREMENT
column.If the
AUTO_INCREMENT
value becomes larger than the maximum integer for the specified integer typeIn all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if the value becomes larger than the maximum integer that can be stored in the specified integer type.
Gaps in auto-increment values for “bulk inserts”
With
innodb_autoinc_lock_mode
set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment values generated by any given statement are consecutive, without gaps, because the table-levelAUTO-INC
lock is held until the end of the statement, and only one such statement can execute at a time.With
innodb_autoinc_lock_mode
set to 2 (“interleaved”), there may be gaps in the auto-increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT
-like” statements.For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts the exact number of auto-increment values required by each statement may not be known and overestimation is possible.
Auto-increment values assigned by “mixed-mode inserts”
Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for some (but not all) resulting rows. Such a statement behaves differently in lock modes 0, 1, and 2. For example, assume
c1
is anAUTO_INCREMENT
column of tablet1
, and that the most recent automatically generated sequence number is 100.mysql> CREATE TABLE t1 ( -> c1 INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, -> c2 CHAR(1) -> ) ENGINE = INNODB;
Now, consider the following “mixed-mode insert” statement:
mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');
With
innodb_autoinc_lock_mode
set to 0 (“traditional”), the four new rows are:mysql> SELECT c1, c2 FROM t1 ORDER BY c2; +-----+------+ | c1 | c2 | +-----+------+ | 1 | a | | 101 | b | | 5 | c | | 102 | d | +-----+------+
The next available auto-increment value is 103 because the auto-increment values are allocated one at a time, not all at once at the beginning of statement execution. This result is true whether or not there are concurrently executing “
INSERT
-like” statements (of any type).With
innodb_autoinc_lock_mode
set to 1 (“consecutive”), the four new rows are also:mysql> SELECT c1, c2 FROM t1 ORDER BY c2; +-----+------+ | c1 | c2 | +-----+------+ | 1 | a | | 101 | b | | 5 | c | | 102 | d | +-----+------+
However, in this case, the next available auto-increment value is 105, not 103 because four auto-increment values are allocated at the time the statement is processed, but only two are used. This result is true whether or not there are concurrently executing “
INSERT
-like” statements (of any type).With
innodb_autoinc_lock_mode
set to 2 (“interleaved”), the four new rows are:mysql> SELECT c1, c2 FROM t1 ORDER BY c2; +-----+------+ | c1 | c2 | +-----+------+ | 1 | a | | x | b | | 5 | c | | y | d | +-----+------+
The values of
x
andy
are unique and larger than any previously generated rows. However, the specific values ofx
andy
depend on the number of auto-increment values generated by concurrently executing statements.Finally, consider the following statement, issued when the most-recently generated sequence number is 100:
mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (101,'c'), (NULL,'d');
With any
innodb_autoinc_lock_mode
setting, this statement generates a duplicate-key error 23000 (Can't write; duplicate key in table
) because 101 is allocated for the row(NULL, 'b')
and insertion of the row(101, 'c')
fails.Modifying
AUTO_INCREMENT
column values in the middle of a sequence ofINSERT
statementsIn all lock modes (0, 1, and 2), modifying an
AUTO_INCREMENT
column value in the middle of a sequence ofINSERT
statements could lead to “Duplicate entry” errors. For example, if you perform anUPDATE
operation that changes anAUTO_INCREMENT
column value to a value larger than the current maximum auto-increment value, subsequentINSERT
operations that do not specify an unused auto-increment value could encounter “Duplicate entry” errors. This behavior is demonstrated in the following example.mysql> CREATE TABLE t1 ( -> c1 INT NOT NULL AUTO_INCREMENT, -> PRIMARY KEY (c1) -> ) ENGINE = InnoDB; mysql> INSERT INTO t1 VALUES(0), (0), (3); mysql> SELECT c1 FROM t1; +----+ | c1 | +----+ | 1 | | 2 | | 3 | +----+ mysql> UPDATE t1 SET c1 = 4 WHERE c1 = 1; mysql> SELECT c1 FROM t1; +----+ | c1 | +----+ | 2 | | 3 | | 4 | +----+ mysql> INSERT INTO t1 VALUES(0); ERROR 1062 (23000): Duplicate entry '4' for key 'PRIMARY'
This section describes how InnoDB
initializes
AUTO_INCREMENT
counters.
If you specify an AUTO_INCREMENT
column for
an InnoDB
table, the table handle in the
InnoDB
data dictionary contains a special
counter called the auto-increment counter that is used in
assigning new values for the column. This counter is stored only
in main memory, not on disk.
To initialize an auto-increment counter after a server restart,
InnoDB
executes the equivalent of the
following statement on the first insert into a table containing
an AUTO_INCREMENT
column.
SELECT MAX(ai_col) FROM table_name FOR UPDATE;
InnoDB
increments the value retrieved by the
statement and assigns it to the column and to the auto-increment
counter for the table. By default, the value is incremented by
1. This default can be overridden by the
auto_increment_increment
configuration setting.
If the table is empty, InnoDB
uses the value
1
. This default can be overridden by the
auto_increment_offset
configuration setting.
If a SHOW TABLE STATUS
statement
examines the table before the auto-increment counter is
initialized, InnoDB
initializes but does not
increment the value. The value is stored for use by later
inserts. This initialization uses a normal exclusive-locking
read on the table and the lock lasts to the end of the
transaction. InnoDB
follows the same
procedure for initializing the auto-increment counter for a
newly created table.
After the auto-increment counter has been initialized, if you do
not explicitly specify a value for an
AUTO_INCREMENT
column,
InnoDB
increments the counter and assigns the
new value to the column. If you insert a row that explicitly
specifies the column value, and the value is greater than the
current counter value, the counter is set to the specified
column value.
InnoDB
uses the in-memory auto-increment
counter as long as the server runs. When the server is stopped
and restarted, InnoDB
reinitializes the
counter for each table for the first
INSERT
to the table, as described
earlier.
A server restart also cancels the effect of the
AUTO_INCREMENT =
table option in N
CREATE TABLE
and
ALTER TABLE
statements, which you
can use with InnoDB
tables to set the initial
counter value or alter the current counter value.
When an
AUTO_INCREMENT
integer column runs out of values, a subsequentINSERT
operation returns a duplicate-key error. This is general MySQL behavior.When you restart the MySQL server,
InnoDB
may reuse an old value that was generated for anAUTO_INCREMENT
column but never stored (that is, a value that was generated during an old transaction that was rolled back).