MySQL HeatWave AutoML includes data drift detection for the following models:
Classification
Regression
Anomaly detection (as of MySQL 9.3.2)
Review how to Create a Machine Learning Model.
Review use cases for Classification Data and Regression Analysis.
Machine learning typically makes an assumption that the training data and test data are similar. Over time, the similarity between the training data and the test data can decrease. This is known as data drift.
You can monitor data drift in the model catalog and when
running the ML_PREDICT_ROW and
ML_PREDICT_TABLE routines.
For the model catalog, the model_metadata
column includes the training_drift_metric
JSON object literal, which contains mean
and variance numeric values. See
Model
Metadata.
mean and variance
indicate the quality of the trained drift detector, and both
values should be low. The more important value is
mean, and if it is greater than 1.0, then
drift evaluation for the test results might not be reliable.
For the ML_PREDICT_ROW and
ML_PREDICT_TABLE routines, the
options parameter includes the
additional_details boolean value. If this
option is enabled, the ml_results column
includes the drift JSON object literal,
which contains the metric numeric value and
the attribution_percent JSON object
literal.
metricindicates the similarity between training and test data. A low value indicates similar values. A value grater than 1.0 indicates data drift, and the prediction results are questionable.attribution_percentindicates the top three features that contribute to data drift for each result. The higher the percentage value, the greater the contribution.
The workflow to analyze data drift includes the following:
Run
ML_TRAINto train the machine learning model with either theclassificationorregressiontask.When training is complete, query the
model_metadatacolumn and review themeanandvariancevalues.Run the
ML_PREDICT_ROWorML_PREDICT_TABLEroutines on the trained model with theadditional_detailsoption set totrue.Review the
driftparameter inml_results.
To analyze data drift in model metadata:
-
Train the model with
ML_TRAIN.mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), @variable);Replace
table_name,target_column_name,task_name, andvariablewith your own values. For example:mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);Where:
census_data.census_trainis the fully qualified name of the table that contains the training dataset (schema_name.table_name).revenueis the name of the target column, which contains ground truth values.JSON_OBJECT('task', 'classification')specifies the machine learning task type.@census_modelis the name of the user-defined session variable that stores the model handle for the duration of the connection. User variables are written as@. Any valid name for a user-defined variable is permitted. For example,var_name@my_model. Learn more about Model Handles.
-
Query the
model_metadatacolumn from the model catalog. Optionally, useJSON_PRETTYto view the output in an easily readable format.mysql> SELECT JSON_PRETTY(model_metadata) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=model_handle;Replace
user1with your own user name andmodel_handlewith your own model handle. For example:mysql> SELECT JSON_PRETTY(model_metadata) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@census_model; +---------------------------------------------------------+ | JSON_PRETTY(model_metadata) | +---------------------------------------------------------+ | { "task": "classification", "notes": null, "chunks": 1, "format": "HWMLv2.0", "n_rows": 100, "status": "Ready", "options": { "task": "classification", "model_explainer": "permutation_importance", "prediction_explainer": "permutation_importance" }, "n_columns": 14, "column_names": [ "age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country" ], "contamination": null, "model_quality": "high", "training_time": 73.90254211425781, "algorithm_name": "RandomForestClassifier", "training_score": -0.35963335633277893, "build_timestamp": 1744377124, "n_selected_rows": 80, "training_params": { "recommend": "ratings", "force_use_X": false, "recommend_k": 3, "remove_seen": true, "ranking_topk": 10, "lsa_components": 100, "ranking_threshold": 1, "feedback_threshold": 1 }, "train_table_name": "census_data.census_train", "model_explanation": { "permutation_importance": { "age": -0.0057, "sex": 0.0002, "race": 0.0001, "fnlwgt": 0.0103, "education": 0.0108, "workclass": 0.0189, "occupation": 0.0, "capital-gain": 0.0304, "capital-loss": 0.0, "relationship": 0.0195, "education-num": 0.0152, "hours-per-week": 0.0235, "marital-status": 0.0099, "native-country": 0.0 } }, "n_selected_columns": 11, "target_column_name": "revenue", "optimization_metric": "neg_log_loss", "selected_column_names": [ "age", "capital-gain", "education", "education-num", "fnlwgt", "hours-per-week", "marital-status", "race", "relationship", "sex", "workclass" ], "training_drift_metric": { "mean": 0.3535, "variance": 0.0597 } } | +---------------------------------------------------------+ 1 row in set (0.0009 sec)Where:
JSON_PRETTYdisplays the information in an easily readable format.ML_SCHEMA_user1.MODEL_CATALOGrefers to the model catalog name. Replaceuser1with your own user name.model_handlerefers to the session variable for the trained model,@census_model. Learn more about Model Handles.
For training_drift_metric, the output
generates a mean value of 0.3535 and a
variance value of 0.0597, which indicates
acceptable data drift.
To analyze data drift detection with a table of predictions:
If not done already, train the model to use. See Analyze Data Drift in Model Metadata.
-
Load the trained model. Update
@census_modelwith your own session variable for the trained model.mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL); -
Run
ML_PREDICT_TABLEto generate a table of predictions.mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);Replace
table_name,model_handle,output_table_name),andoptionswith your own values. For example:mysql> CALL sys.ML_PREDICT_TABLE('census_data.`census_test`', @census_model, 'census_data.`census_test_predictions`', JSON_OBJECT('additional_details', true));Where:
census_data.census_testis the fully qualified name of the test dataset table (database_name.table_name).@census_modelis the session variable that contains the model handle. See Work with Model Handles.census_data.census_test_predictionsis the output table where predictions are stored.JSON_OBJECTincludes theadditional_detailsoption set totrue, soml_resultsincludes values formetricandattribution_percent.
-
Since a
metricvalue over 1.0 indicates data drift, query rows in the output table that only have a metric value over 1.0.mysql> SELECT ml_results FROM table_name WHERE JSON_EXTRACT(ml_results, '$.drift.metric') > 1.0;Replace
table_namewith your own value. For example:mysql> SELECT ml_results FROM census_test_predictions WHERE JSON_EXTRACT(ml_results, '$.drift.metric') > 1.0; +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ml_results | +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.67, ">50K": 0.33}, "drift": {"metric": 2.46, "attribution_percent": {"relationship": 22.07, "education-num": 19.92, "education": 12.36}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.9, ">50K": 0.1}, "drift": {"metric": 1.32, "attribution_percent": {"age": 31.25, "relationship": 17.36, "capital-gain": 17.03}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.99, ">50K": 0.01}, "drift": {"metric": 1.1, "attribution_percent": {"capital-gain": 30.94, "relationship": 17.8, "workclass": 17.49}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.78, ">50K": 0.22}, "drift": {"metric": 2.42, "attribution_percent": {"hours-per-week": 29.37, "age": 28.52, "capital-gain": 23.85}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.97, ">50K": 0.03}, "drift": {"metric": 1.09, "attribution_percent": {"education": 22.18, "relationship": 16.57, "capital-gain": 13.57}}} | | {"predictions": {"revenue": ">50K"}, "probabilities": {"<=50K": 0.32, ">50K": 0.68}, "drift": {"metric": 3.18, "attribution_percent": {"relationship": 26.41, "education-num": 12.8, "capital-gain": 8.16}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.96, ">50K": 0.04}, "drift": {"metric": 1.11, "attribution_percent": {"marital-status": 23.34, "race": 16.02, "education": 12.83}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"metric": 1.4, "attribution_percent": {"age": 27.26, "race": 18.98, "relationship": 15.49}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.91, ">50K": 0.09}, "drift": {"metric": 1.99, "attribution_percent": {"race": 23.89, "capital-gain": 21.38, "education": 16.22}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.78, ">50K": 0.22}, "drift": {"metric": 2.33, "attribution_percent": {"capital-gain": 31.64, "hours-per-week": 15.49, "education": 7.94}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"metric": 1.38, "attribution_percent": {"sex": 23.55, "workclass": 23.55, "education-num": 15.71}}} | | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.62, ">50K": 0.38}, "drift": {"metric": 4.33, "attribution_percent": {"fnlwgt": 21.08, "relationship": 14.24, "workclass": 5.27}}} | +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 12 rows in set (0.0014 sec)The output displays the rows with high metric values (> 1.0), indicating data drift.
To anayze data drift detection with one or more rows of predictions:
If not done already, train the model to use. See Analyze Data Drift in Model Metadata.
-
Load the trained model. Update
@census_modelwith your own session variable for the trained model.mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL); -
Run
ML_PREDICT_ROWto generate predictions for a defined number of rows.mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("output_col_name", schema.`input_col_name`, "output_col_name", schema.`input_col_name`, ...), model_handle, options) FROM input_table_name LIMIT N;The following example generates predictions for three rows of the table. The output is similar to the previous example.
mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT( "age", census_test.`age`, "workclass", census_test.`workclass`, "fnlwgt", census_test.`fnlwgt`, "education", census_test.`education`, "education-num", census_test.`education-num`, "marital-status", census_test.`marital-status`, "occupation", census_test.`occupation`, "relationship", census_test.`relationship`, "race", census_test.`race`, "sex", census_test.`sex`, "capital-gain", census_test.`capital-gain`, "capital-loss", census_test.`capital-loss`, "hours-per-week", census_test.`hours-per-week`, "native-country", census_test.`native-country`), @census_model, JSON_OBJECT('additional_details', TRUE))FROM census_data.census_test LIMIT 3; +--------------------------------------------------+ | sys.ML_PREDICT_ROW(JSON_OBJECT( "age", census_test.`age`, "workclass", census_test.`workclass`, "fnlwgt", census_test.`fnlwgt`, "education", census_test.`education`, "education-num", census_test.`education-num`, "ma | +-------------------------------------------------+ |{ | | "age": 37, | | "sex": "Male", | | "race": "White", | | "fnlwgt": 99146, | | "education": "Bachelors", | | "workclass": "Private", | | "Prediction": "<=50K", | | "ml_results": { | | "drift": { | | "metric": 0, | | "attribution_percent": { | | "age": 0, | | "fnlwgt": 46.67, | | "capital-gain": 0}}, | | "predictions": { | | "revenue": "<=50K"}, | | "probabilities": { | | ">50K": 0.42, | | "<=50K": 0.58}}, | | "occupation": "Exec-managerial", | | "capital-gain": 0, | | "capital-loss": 1977, | | "relationship": "Husband", | | "education-num": 13, | | "hours-per-week": 50, | | "marital-status": "Married-civ-spouse", | | "native-country": "United-States"} | |{ | | "age": 34, | | "sex": "Male", | | "race": "White", | | "fnlwgt": 27409, | | "education": "9th", | | "workclass": "Private", | | "Prediction": "<=50K", | | "ml_results": { | | "drift": { | | "metric": 0.1, | | "attribution_percent": { | | "fnlwgt": 25, | | "education": 33.31, | | "workclass": 16.22}}, | | "predictions": { | | "revenue": "<=50K"}, | | "probabilities": { | | ">50K": 0.24, | | "<=50K": 0.76}}, | | "occupation": "Craft-repair", | | "capital-gain": 0, | | "capital-loss": 0, | | "relationship": "Husband", | | "education-num": 5, | | "hours-per-week": 50, | | "marital-status": "Married-civ-spouse", | | "native-country": "United-States"} | |{ | | "age": 30, | | "sex": "Female", | | "race": "White", | | "fnlwgt": 299507, | | "education": "Assoc-acdm", | | "workclass": "Private", | | "Prediction": "<=50K", | | "ml_results": { | | "drift": { | | "metric": 0.26, | | "attribution_percent": { | | "relationship": 21.36, | | "education-num": 28.33, | | "hours-per-week": 33.21}}, | | "predictions": { | | "revenue": "<=50K"}, | | "probabilities": { | | ">50K": 0.01, | | "<=50K": 0.99}}, | | "occupation": "Other-service", | | "capital-gain": 0, | | "capital-loss": 0, | | "relationship": "Unmarried", | | "education-num": 12, | | "hours-per-week": 40, | | "marital-status": "Separated", | | "native-country": "United-States"} | +-------------------------------------------------+ 10 rows in set (6.8109 sec)Where:
The first
JSON_OBJECThas output column names and key-value pairs of the columns in the trained table.@census_modelis the session variable that contains the model handle. Learn more about Model Handles.The second
JSON_OBJECTincludes theadditional_detailsoption set totrue, soml_resultsincludes values formetricandattribution_percent.census_data.census_testis the fully qualified name of the test dataset table (database_name.table_name).The
LIMITof 3 means that the output includes a maximum of three rows from the trained table.
The output allows you to review data drift values for the selected rows.
Review Machine Learning Use Cases to create machine learning models with sample datasets.