Documentation Home
MySQL 5.7 Reference Manual
Related Documentation Download this Manual
PDF (US Ltr) - 35.0Mb
PDF (A4) - 35.1Mb
Man Pages (TGZ) - 255.5Kb
Man Pages (Zip) - 360.4Kb
Info (Gzip) - 3.4Mb
Info (Zip) - 3.4Mb
Excerpts from this Manual

MySQL 5.7 Reference Manual  /  Functions and Operators  /  Miscellaneous Functions

12.20 Miscellaneous Functions

Table 12.26 Miscellaneous Functions

Name Description
ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value rejection
DEFAULT() Return the default value for a table column
INET_ATON() Return the numeric value of an IP address
INET_NTOA() Return the IP address from a numeric value
INET6_ATON() Return the numeric value of an IPv6 address
INET6_NTOA() Return the IPv6 address from a numeric value
IS_IPV4() Whether argument is an IPv4 address
IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address
IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address
IS_IPV6() Whether argument is an IPv6 address
NAME_CONST() Cause the column to have the given name
SLEEP() Sleep for a number of seconds
UUID() Return a Universal Unique Identifier (UUID)
UUID_SHORT() Return an integer-valued universal identifier
VALUES() Define the values to be used during an INSERT

  • ANY_VALUE(arg)

    This function is useful for GROUP BY queries when the ONLY_FULL_GROUP_BY SQL mode is enabled, for cases when MySQL rejects a query that you know is valid for reasons that MySQL cannot determine. The function return value and type are the same as the return value and type of its argument, but the function result is not checked for the ONLY_FULL_GROUP_BY SQL mode.

    For example, if name is a nonindexed column, the following query fails with ONLY_FULL_GROUP_BY enabled:

    mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
    ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
    BY clause and contains nonaggregated column 'mydb.t.address' which
    is not functionally dependent on columns in GROUP BY clause; this
    is incompatible with sql_mode=only_full_group_by

    The failure occurs because address is a nonaggregated column that is neither named among GROUP BY columns nor functionally dependent on them. As a result, the address value for rows within each name group is nondeterministic. There are multiple ways to cause MySQL to accept the query:

    • Alter the table to make name a primary key or a unique NOT NULL column. This enables MySQL to determine that address is functionally dependent on name; that is, address is uniquely determined by name. (This technique is inapplicable if NULL must be permitted as a valid name value.)

    • Use ANY_VALUE() to refer to address:

      SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

      In this case, MySQL ignores the nondeterminism of address values within each name group and accepts the query. This may be useful if you simply do not care which value of a nonaggregated column is chosen for each group. ANY_VALUE() is not an aggregate function, unlike functions such as SUM() or COUNT(). It simply acts to suppress the test for nondeterminism.

    • Disable ONLY_FULL_GROUP_BY. This is equivalent to using ANY_VALUE() with ONLY_FULL_GROUP_BY enabled, as described in the previous item.

    ANY_VALUE() is also useful if functional dependence exists between columns but MySQL cannot determine it. The following query is valid because age is functionally dependent on the grouping column age-1, but MySQL cannot tell that and rejects the query with ONLY_FULL_GROUP_BY enabled:

    SELECT age FROM t GROUP BY age-1;

    To cause MySQL to accept the query, use ANY_VALUE():

    SELECT ANY_VALUE(age) FROM t GROUP BY age-1;

    ANY_VALUE() can be used for queries that refer to aggregate functions in the absence of a GROUP BY clause:

    mysql> SELECT name, MAX(age) FROM t;
    ERROR 1140 (42000): In aggregated query without GROUP BY, expression
    #1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
    is incompatible with sql_mode=only_full_group_by

    Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for the group. ANY_VALUE() tells MySQL to accept the query:

    SELECT ANY_VALUE(name), MAX(age) FROM t;

    It may be that, due to some property of a given data set, you know that a selected nonaggregated column is effectively functionally dependent on a GROUP BY column. For example, an application may enforce uniqueness of one column with respect to another. In this case, using ANY_VALUE() for the effectively functionally dependent column may make sense.

    For additional discussion, see Section 12.19.3, “MySQL Handling of GROUP BY”.

  • DEFAULT(col_name)

    Returns the default value for a table column. An error results if the column has no default value.

    mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;
  • FORMAT(X,D)

    Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. For details, see Section 12.8, “String Functions and Operators”.

  • INET_ATON(expr)

    Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that represents the numeric value of the address in network byte order (big endian). INET_ATON() returns NULL if it does not understand its argument.

    mysql> SELECT INET_ATON('10.0.5.9');
            -> 167773449

    For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

    INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as '127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be used for such addresses.

    Note

    To store values generated by INET_ATON(), use an INT UNSIGNED column rather than INT, which is signed. If you use a signed column, values corresponding to IP addresses for which the first octet is greater than 127 cannot be stored correctly. See Section 11.1.7, “Out-of-Range and Overflow Handling”.

  • INET_NTOA(expr)

    Given a numeric IPv4 network address in network byte order, returns the dotted-quad string representation of the address as a string in the connection character set. INET_NTOA() returns NULL if it does not understand its argument.

    mysql> SELECT INET_NTOA(167773449);
            -> '10.0.5.9'
  • INET6_ATON(expr)

    Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the numeric value of the address in network byte order (big endian). Because numeric-format IPv6 addresses require more bytes than the largest integer type, the representation returned by this function has the VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4) for IPv4 addresses. If the argument is not a valid address, INET6_ATON() returns NULL.

    The following examples use HEX() to display the INET6_ATON() result in printable form:

    mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
            -> 'FDFE0000000000005A55CAFFFEFA9089'
    mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
            -> '0A000509'

    INET6_ATON() observes several constraints on valid arguments. These are given in the following list along with examples.

    • A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

    • A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 198.51.100.0/24.

    • For values representing IPv4 addresses, only classless addresses are supported. Classful addresses such as 198.51.1 are rejected. A trailing port number is not permitted, as in 198.51.100.2:8080. Hexadecimal numbers in address components are not permitted, as in 198.0xa0.1.2. Octal numbers are not supported: 198.51.010.1 is treated as 198.51.10.1, not 198.51.8.1. These IPv4 constraints also apply to IPv6 addresses that have IPv4 address parts, such as IPv4-compatible or IPv4-mapped addresses.

    To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address represented in numeric form as a VARBINARY value, use this expression:

    INET6_ATON(INET_NTOA(expr))

    For example:

    mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
            -> '0A000509'

    If INET6_ATON() is invoked from within the mysql client, binary strings display using hexadecimal notation, depending on the value of the --binary-as-hex. For more information about that option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

  • INET6_NTOA(expr)

    Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the string representation of the address as a string in the connection character set. If the argument is not a valid address, INET6_NTOA() returns NULL.

    INET6_NTOA() has these properties:

    • It does not use operating system functions to perform conversions, thus the output string is platform independent.

    • The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

      CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

      The resulting table would have this definition:

      CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);
    • The return string uses lowercase letters for IPv6 addresses.

    mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
            -> 'fdfe::5a55:caff:fefa:9089'
    mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
            -> '10.0.5.9'
    
    mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
            -> 'fdfe::5a55:caff:fefa:9089'
    mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
            -> '10.0.5.9'

    If INET6_NTOA() is invoked from within the mysql client, binary strings display using hexadecimal notation, depending on the value of the --binary-as-hex. For more information about that option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

  • IS_IPV4(expr)

    Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.

    mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
            -> 1, 0

    For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) returns a value that is not NULL. The converse statement is not true: In some cases, INET_ATON() returns a value other than NULL when IS_IPV4() returns 0.

    As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong checks against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to internal form and check for a NULL result (which indicates an invalid address). INET6_ATON() is equally strong as IS_IPV4() about checking IPv4 addresses.

  • IS_IPV4_COMPAT(expr)

    This function takes an IPv6 address represented in numeric form as a binary string, as returned by INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise. IPv4-compatible addresses have the form ::ipv4_address.

    mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
            -> 1
    mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
            -> 0

    The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation. For example, 198.51.100.1 has this raw hexadecimal value:

    mysql> SELECT HEX(INET6_ATON('198.51.100.1'));
            -> 'C6336401'

    Expressed in IPv4-compatible form, ::198.51.100.1 is equivalent to ::c0a8:0001 or (without leading zeros) ::c0a8:1

    mysql> SELECT
        ->   IS_IPV4_COMPAT(INET6_ATON('::198.51.100.1')),
        ->   IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
        ->   IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
            -> 1, 1, 1
  • IS_IPV4_MAPPED(expr)

    This function takes an IPv6 address represented in numeric form as a binary string, as returned by INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-mapped addresses have the form ::ffff:ipv4_address.

    mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
            -> 0
    mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
            -> 1

    As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented using hexadecimal notation:

    mysql> SELECT
        ->   IS_IPV4_MAPPED(INET6_ATON('::ffff:198.51.100.1')),
        ->   IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
        ->   IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
            -> 1, 1, 1
  • IS_IPV6(expr)

    Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function does not consider IPv4 addresses to be valid IPv6 addresses.

    mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
            -> 0, 1

    For a given argument, if IS_IPV6() returns 1, INET6_ATON() returns a value tht si not NULL.

  • MASTER_POS_WAIT(log_name,log_pos[,timeout][,channel])

    This function is useful for control of source-replica synchronization. It blocks until the replica has read and applied all updates up to the specified position in the source log. The return value is the number of log events the replica had to wait for to advance to the specified position. The function returns NULL if the replica SQL thread is not started, the replica's source information is not initialized, the arguments are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the replica SQL thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the replica is past the specified position, the function returns immediately.

    On a multithreaded replica, the function waits until expiry of the limit set by the slave_checkpoint_group or slave_checkpoint_period system variable, when the checkpoint operation is called to update the status of the replica. Depending on the setting for the system variables, the function might therefore return some time after the specified position was reached.

    If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have elapsed. timeout must be greater than or equal to 0. (As of MySQL 5.7.18, when the server is running in strict SQL mode, a negative timeout value is immediately rejected with ER_WRONG_ARGUMENTS; otherwise the function returns NULL, and raises a warning.)

    The optional channel value enables you to name which replication channel the function applies to. See Section 16.2.2, “Replication Channels” for more information.

    This function is unsafe for statement-based replication. A warning is logged if you use this function when binlog_format is set to STATEMENT.

  • NAME_CONST(name,value)

    Returns the given value. When used to produce a result set column, NAME_CONST() causes the column to have the given name. The arguments should be constants.

    mysql> SELECT NAME_CONST('myname', 14);
    +--------+
    | myname |
    +--------+
    |     14 |
    +--------+

    This function is for internal use only. The server uses it when writing statements from stored programs that contain references to local program variables, as described in Section 23.7, “Stored Program Binary Logging”. You might see this function in the output from mysqlbinlog.

    For your applications, you can obtain exactly the same result as in the example just shown by using simple aliasing, like this:

    mysql> SELECT 14 AS myname;
    +--------+
    | myname |
    +--------+
    |     14 |
    +--------+
    1 row in set (0.00 sec)

    See Section 13.2.9, “SELECT Statement”, for more information about column aliases.

  • SLEEP(duration)

    Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. The duration may have a fractional part. If the argument is NULL or negative, SLEEP() produces a warning, or an error in strict SQL mode.

    When sleep returns normally (without interruption), it returns 0:

    mysql> SELECT SLEEP(1000);
    +-------------+
    | SLEEP(1000) |
    +-------------+
    |           0 |
    +-------------+

    When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query itself returns no error. This is true whether the query is killed or times out:

    • This statement is interrupted using KILL QUERY from another session:

      mysql> SELECT SLEEP(1000);
      +-------------+
      | SLEEP(1000) |
      +-------------+
      |           1 |
      +-------------+
    • This statement is interrupted by timing out:

      mysql> SELECT /*+ MAX_EXECUTION_TIME(1) */ SLEEP(1000);
      +-------------+
      | SLEEP(1000) |
      +-------------+
      |           1 |
      +-------------+

    When SLEEP() is only part of a query that is interrupted, the query returns an error:

    • This statement is interrupted using KILL QUERY from another session:

      mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
      ERROR 1317 (70100): Query execution was interrupted
    • This statement is interrupted by timing out:

      mysql> SELECT /*+ MAX_EXECUTION_TIME(1000) */ 1 FROM t1 WHERE SLEEP(1000);
      ERROR 3024 (HY000): Query execution was interrupted, maximum statement
      execution time exceeded

    This function is unsafe for statement-based replication. A warning is logged if you use this function when binlog_format is set to STATEMENT.

  • UUID()

    Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace (http://www.ietf.org/rfc/rfc4122.txt).

    A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are expected to generate two different values, even if these calls are performed on two separate devices not connected to each other.

    Warning

    Although UUID() values are intended to be unique, they are not necessarily unguessable or unpredictable. If unpredictability is required, UUID values should be generated some other way.

    UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is a 128-bit number represented as a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:

    • The first three numbers are generated from the low, middle, and high parts of a timestamp. The high part also includes the UUID version number.

    • The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity (for example, due to daylight saving time).

    • The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is substituted if the latter is not available (for example, because the host device has no Ethernet card, or it is unknown how to find the hardware address of an interface on the host operating system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should have very low probability.

      The MAC address of an interface is taken into account only on FreeBSD, Linux, and Windows. On other operating systems, MySQL uses a randomly generated 48-bit number.

    mysql> SELECT UUID();
            -> '6ccd780c-baba-1026-9564-5b8c656024db'

    This function is unsafe for statement-based replication. A warning is logged if you use this function when binlog_format is set to STATEMENT.

  • UUID_SHORT()

    Returns a short universal identifier as a 64-bit unsigned integer. Values returned by UUID_SHORT() differ from the string-format 128-bit identifiers returned by the UUID() function and have different uniqueness properties. The value of UUID_SHORT() is guaranteed to be unique if the following conditions hold:

    • The server_id value of the current server is between 0 and 255 and is unique among your set of source and replica servers

    • You do not set back the system time for your server host between mysqld restarts

    • You invoke UUID_SHORT() on average fewer than 16 million times per second between mysqld restarts

    The UUID_SHORT() return value is constructed this way:

      (server_id & 255) << 56
    + (server_startup_time_in_seconds << 24)
    + incremented_variable++;
    mysql> SELECT UUID_SHORT();
            -> 92395783831158784
    Note

    UUID_SHORT() does not work with statement-based replication.

  • VALUES(col_name)

    In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”.

    mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
        -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);