To view the details for the models in your model catalog, query
the MODEL_CATALOG
table.
-
Review the following:
The following example queries model_id
,
model_handle
, and
model_owner
,
train_table_name
from the model catalog.
Replace user1
with your own user name.
mysql> SELECT model_id, model_handle, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+----------+-----------------------------------------------------+-------------+----------------------------------------------------------+
| model_id | model_handle | model_owner | train_table_name |
+----------+-----------------------------------------------------+-------------+----------------------------------------------------------+
| 1 | classification_use_case | user1 | classification_data.training_data |
| 2 | regression_use_case | user1 | regression_data.house_price_training |
| 3 | forecasting_use_case | user1 | forecasting_data.electricity_demand_training |
| 4 | anomaly_use_case | user1 | anomaly_detection_data.credit_card_transactions_training |
| 5 | recommendation_use_case_default | user1 | recommendations_data.user_ratings_training |
| 6 | topic_modeling_use_case | user1 | topic_modeling_data.movies |
+----------+-----------------------------------------------------+-------------+----------------------------------------------------------+
6 rows in set (0.0436 sec)
Where:
model_id
is a unique numeric identifier for the model.model_owner
is the user that created the model.model_handle
is the handle by which the model is called.ML_SCHEMA_
is the fully qualified name of theuser1
.MODEL_CATALOGMODEL_CATALOG
table. The schema is named for the owning user.
The output displays details from only a few
MODEL_CATALOG
table columns. For other
columns you can query, see
The Model
Catalog.
The ML_EXPLAIN
routine
generates model explanations and stores them in the model
catalog. See Generate
Model Explanations to learn more.
A model explanation helps you identify the features that are most important to the model overall. Feature importance is presented as an attribution value. A positive value indicates that a feature contributed toward the prediction. A negative value can have different interpretations depending on the specific model explainer used for the model. For example, a negative value for the permutation importance explainer means that the feature is not important.
To view a model explanation, you can query the
model_explanation
column from the model
catalog by referencing the model handle. Review how to
Query the Model Handle.
mysql> SELECT column FROM ML_SCHEMA_user name.MODEL_CATALOG where model_handle='model_handle';
The following example queries one of the model handles and
views the model explanation for that model. Optionally, use
JSON_PRETTY
to view the output in an easily
readable format.
mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG where model_handle='census_model';
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation) |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {
"permutation_importance": {
"age": 0.0305,
"sex": 0.0023,
"race": 0.0017,
"fnlwgt": 0.0025,
"education": 0.0013,
"workclass": 0.0043,
"occupation": 0.0229,
"capital-gain": 0.0495,
"capital-loss": 0.0156,
"relationship": 0.0267,
"education-num": 0.0371,
"hours-per-week": 0.0142,
"marital-status": 0.0267,
"native-country": 0.0
}
} |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0447 sec)
Where:
ML_SCHEMA_
is the fully qualified name of theuser1
.MODEL_CATALOGMODEL_CATALOG
table. The schema is named for the user that created the model.census_data.census_train_user1_1744548610842
is the model handle. See Work with Model Handles.
The output displays feature importance values for each column
by using the permutation_importance
model
explainer.
Alternatively, you can query the model explanation by using
the valid session variable for the model handle. Optionally,
use JSON_PRETTY
to view the output in an
easily readable format.
mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_admin.MODEL_CATALOG where model_handle=@census_model;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation) |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {
"permutation_importance": {
"age": 0.0305,
"sex": 0.0023,
"race": 0.0017,
"fnlwgt": 0.0025,
"education": 0.0013,
"workclass": 0.0043,
"occupation": 0.0229,
"capital-gain": 0.0495,
"capital-loss": 0.0156,
"relationship": 0.0267,
"education-num": 0.0371,
"hours-per-week": 0.0142,
"marital-status": 0.0267,
"native-country": 0.0
}
} |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0447 sec)
See Work with Model Handles to learn more.
Review the The Model Catalog.
Review how to Work with Model Handles.