Documentation Home
HeatWave User Guide
Related Documentation Download this Manual
PDF (US Ltr) - 2.1Mb
PDF (A4) - 2.1Mb


HeatWave User Guide  /  ...  /  ML_MODEL_IMPORT

3.16.4 ML_MODEL_IMPORT

Use the ML_MODEL_IMPORT routine to import a pre-trained model into the model catalog. HeatWave AutoML supports the import of HeatWave AutoML and ONNX, Open Neural Network Exchange, format models. After import, all the HeatWave AutoML routines can be used with an ONNX model.

Models in ONNX format, .onnx. cannot be loaded directly into a MySQL table. They require string serialization and conversion to Base64 binary encoding. Before running ML_MODEL_IMPORT, follow the instructions in Section 3.14.2, “ONNX Model Import” to pre-process and then load the model into a temporary table for import to HeatWave.

MySQL 9.0.0 introduces support for large models that changes how HeatWave AutoML stores models, see: Section 3.14.1, “The Model Catalog”. ML_MODEL_IMPORT upgrades older models.

MySQL 9.0.0 also supports model import from a table. The supported model import formats are ONNX, and all the formats supported by the model catalog. The default import format is ONNX. HeatWave AutoML verifies models with the ONNX format, and stores them as ONNXv2.0.

The table should have the following columns, and their recommended parameters:

The table must meet the following criteria:

  • There must be one row, and only one row, in the table with chunk_id = 1.

  • The model_metadata corresponding to chunk_id = 1 must have the correct JSON key, value pair for the model format.

ML_MODEL_IMPORT will store the model_metadata corresponding to chunk_id = 1 in the model catalog, and ignore the model_metadata from other rows.

If chunks in the model_metadata corresponding to chunk_id = 1 is not set, it will be set to the number of rows in the input table.

If ML_MODEL_IMPORT fails or is cancelled, there will be no change to the MODEL_CATALOG and to the model_object_catalog.

ML_MODEL_IMPORT Syntax

As of MySQL 9.0.0, ML_MODEL_IMPORT can import a model from a table as well as a a preprocessed model object. This uses an alternative syntax for model_metadata:

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

model_metadata: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['schema', 'schema']
          ['table', 'table']
          }
}

model_metadata: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'recommendation'}|NULL]
          ['build_timestamp', 'timestamp']
          ['target_column_name', 'column']
          ['train_table_name', 'table']
          ['column_names', JSON_ARRAY('column'[,'column'] ...)]
          ['model_explanation', ml_explain_options]
          ['notes', 'notes']
          ['format', 'format']
          ['status', {'creating'|'ready'|'error'}|NULL]
          ['model_quality', 'quality']
          ['training_time', 'time']
          ['algorithm_name', 'algorithm']
          ['training_score', 'score']
          ['n_rows', 'rows']
          ['n_columns', 'columns']
          ['n_selected_rows', 'rows']
          ['n_selected_columns', 'columns']
          ['optimization_metric', 'metric']
          ['selected_column_names', JSON_ARRAY('column'[,'column'] ...)]
          ['contamination', 'contamination']
          ['options', ml_train_options]
          ['training_params', ml_train_params]
          ['onnx_inputs_info', data_types_map]
          ['onnx_outputs_info', labels_map]
          ['training_drift_metric', JSON_OBJECT('mean', 'value', 'variance', 'value')]
          ['chunks', 'chunks']
}

Before MySQL 9.0.0, use ML_MODEL_IMPORT to import a preprocessed model object:

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

model_metadata: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'recommendation'}|NULL]
          ['build_timestamp', 'timestamp']
          ['target_column_name', 'column']
          ['train_table_name', 'table']
          ['column_names', JSON_ARRAY('column'[,'column'] ...)]
          ['model_explanation', ml_explain_options]
          ['notes', 'notes']
          ['format', 'format']
          ['status', {'creating'|'ready'|'error'}|NULL]
          ['model_quality', 'quality']
          ['training_time', 'time']
          ['algorithm_name', 'algorithm']
          ['training_score', 'score']
          ['n_rows', 'rows']
          ['n_columns', 'columns']
          ['n_selected_rows', 'rows']
          ['n_selected_columns', 'columns']
          ['optimization_metric', 'metric']
          ['selected_column_names', JSON_ARRAY('column'[,'column'] ...)]
          ['contamination', 'contamination']
          ['options', ml_train_options]
          ['training_params', ml_train_params]
          ['onnx_inputs_info', data_types_map]
          ['onnx_outputs_info', labels_map]
          ['training_drift_metric', JSON_OBJECT('mean', 'value', 'variance', 'value')]
          }
}

ML_MODEL_IMPORT parameters:

  • model_object:

    • To import a model from a table: Set to NULL.

    • To import a model object: The preprocessed model object.

  • model_metadata:

    • To import a model from a table:

      • schema: The name of the schema.

      • table: The name of the table.

    • To import a model object: An optional JSON object literal that contains key-value pairs with model metadata. See Section 3.14.1.3, “Model Metadata”.

  • model_handle: The model handle for the model. The model is stored in the model catalog under this name and accessed using it. Specify a model handle that does not already exist in the model catalog. Set to NULL for HeatWave AutoML to generate a unique model handle.

Syntax Examples

  • An example that imports a HeatWave AutoML model with metadata:

    mysql> SET @hwml_model = "hwml_model";
    Query OK, 0 rows affected (0.00 sec)
    
    mysql> CALL sys.ML_TRAIN('mlcorpus.input_train', 'target', NULL, @hwml_model);
    Query OK, 0 rows affected (23.36 sec)
    
    mysql> SET @hwml_object = (SELECT model_object FROM ML_SCHEMA_root.MODEL_CATALOG 
              WHERE model_handle=@hwml_model);
    Query OK, 0 rows affected (0.00 sec)
    
    mysql> SET @hwml_metadata = (SELECT model_metadata FROM ML_SCHEMA_root.MODEL_CATALOG 
              WHERE model_handle=@hwml_model);
    Query OK, 0 rows affected (0.00 sec)
    
    mysql> CALL sys.ML_MODEL_IMPORT(@hwml_object, @hwml_metadata, @imported_model);
    Query OK, 0 rows affected (0.01 sec)
    
    mysql> model_metadata->>'$.task' AS task, model_owner, 
              model_metadata->>'$.build_timestamp' AS build_timestamp, 
              model_metadata->>'$.target_column_name' AS target_column_name, 
              model_metadata->>'$.train_table_name' AS train_table_name, model_object_size, 
              model_metadata->>'$.model_explanation' AS model_explanation 
              FROM ML_SCHEMA_root.MODEL_CATALOG;
    +----------------+----------------+-----------------+--------------------+----------------------+-------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | task           | model_owner    | build_timestamp | target_column_name | train_table_name     | model_object_size | model_explanation                                                                                                                                                                          |
    +----------------+----------------+-----------------+--------------------+----------------------+-------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | classification | root           |      1679202888 | target             | mlcorpus.input_train |              4748 | {"permutation_importance": {"C0": 0.0, "C1": 0.0, "C2": 0.0, "C3": 0.0, "C4": 0.0, "C5": 0.0, "C6": 0.0, "C7": 0.0, "C8": 0.0, "C9": 0.0, "C10": 0.0, "C11": 0.0, "C12": 0.0, "C13": 0.0}} |
    | classification | root           |      1679202888 | target             | mlcorpus.input_train |              4748 | {"permutation_importance": {"C0": 0.0, "C1": 0.0, "C2": 0.0, "C3": 0.0, "C4": 0.0, "C5": 0.0, "C6": 0.0, "C7": 0.0, "C8": 0.0, "C9": 0.0, "C10": 0.0, "C11": 0.0, "C12": 0.0, "C13": 0.0}} |
    +----------------+----------------+-----------------+--------------------+----------------------+-------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    2 rows in set (0.00 sec)
    
    
    mysql> SELECT model_metadata->>'$.column_names' AS column_names 
              FROM ML_SCHEMA_root.MODEL_CATALOG
              WHERE model_handle LIKE 'hwml%';
    +------------------------------------------------------------------------------------------+
    | column_names                                                                             |
    +------------------------------------------------------------------------------------------+
    | ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9", "C10", "C11", "C12", "C13"] |
    | ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9", "C10", "C11", "C12", "C13"] |
    +------------------------------------------------------------------------------------------+
    2 rows in set (0.00 sec)
  • An example that imports an ONNX model without specifying metadata:

    mysql> CALL sys.ML_MODEL_IMPORT(@onnx_encode, NULL, 'onnx_test');
  • An example that exports a model to a table, switches users, and then imports the model from that table:

    mysql> CALL sys.ML_MODEL_EXPORT(@iris_model, 'ML_SCHEMA_user1.model_export');
    Query OK, 0 rows affected (0.06 sec)
    
    mysql> SHOW CREATE TABLE ML_SCHEMA_user1.model_export;
    +--------------+--------------------------------------------------------------------+
    | Table        | Create Table                                                       |
    +--------------+--------------------------------------------------------------------+
    | model_export | CREATE TABLE `model_export` (
      `chunk_id` int NOT NULL AUTO_INCREMENT,
      `model_object` longtext,
      `model_metadata` json DEFAULT NULL,
      PRIMARY KEY (`chunk_id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
    +--------------+--------------------------------------------------------------------+
    1 row in set (0.00 sec)
     
    # switch to user2
    
    mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'ML_SCHEMA_user1', 'table', 'model_export'), @iris_export);
    Query OK, 0 rows affected (0.19 sec)
    
    mysql> CALL sys.ML_MODEL_LOAD(@iris_export, NULL);
    Query OK, 0 rows affected (0.63 sec)
    
    mysql> SELECT model_object, model_object_size 
              FROM ML_SCHEMA_user2.MODEL_CATALOG 
              WHERE model_handle=@iris_export;
    +--------------+-------------------+
    | model_object | model_object_size |
    +--------------+-------------------+
    | NULL         |            348954 |
    +--------------+-------------------+
    1 row in set (0.00 sec)
    
    
    mysql> SELECT chunk_id, LENGTH(model_object) 
              FROM ML_SCHEMA_user2.model_object_catalog 
              WHERE model_handle=@iris_export;
    +----------+----------------------+
    | chunk_id | LENGTH(model_object) |
    +----------+----------------------+
    |        1 |               348954 |
    +----------+----------------------+
    1 row in set (0.00 sec)
  • An example that imports a model in ONNX format from a table:

    mysql> DROP TABLE IF EXISTS model_table;
    
    mysql> CREATE TABLE model_table (
              chunk_id INT AUTO_INCREMENT PRIMARY KEY,
              model_object LONGTEXT NOT NULL,
              model_metadata JSON DEFAULT NULL);
    
    mysql> LOAD DATA INFILE '/onnx_examples/x00' 
              INTO TABLE model_table 
              CHARACTER SET binary 
              FIELDS TERMINATED BY '\t' 
              LINES TERMINATED BY '\r' 
              (model_object);
    Query OK, 1 row affected (34.96 sec)
    Records: 1  Deleted: 0  Skipped: 0  Warnings: 0
    
    mysql> LOAD DATA INFILE '/onnx_examples/x01' 
              INTO TABLE model_table 
              CHARACTER SET binary 
              FIELDS TERMINATED BY '\t' 
              LINES TERMINATED BY '\r' 
              (model_object);
    Query OK, 1 row affected (32.74 sec)
    Records: 1  Deleted: 0  Skipped: 0  Warnings: 0
    
    mysql> LOAD DATA INFILE '/onnx_examples/x02' 
              INTO TABLE model_table 
              CHARACTER SET binary 
              FIELDS TERMINATED BY '\t' 
              LINES TERMINATED BY '\r' 
              (model_object);
    Query OK, 1 row affected (11.90 sec)
    Records: 1  Deleted: 0  Skipped: 0  Warnings: 0
    
    mysql> SET @model_metadata = JSON_OBJECT('task','classification','onnx_outputs_info',JSON_OBJECT('predictions_name','label','prediction_probabilities_name', 'probabilities'),'target_column_name','target');
    
    mysql> UPDATE mlcorpus.model_table 
              SET model_metadata=@model_metadata 
              WHERE chunk_id=1;
    
    mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'mlcorpus', 'table', 'model_table'), @onnx_model);
    Query OK, 0 rows affected (18 min 7.29 sec)
    
    mysql> CALL sys.ML_MODEL_LOAD(@onnx_model, NULL);
    Query OK, 0 rows affected (6 min 51.37 sec) 
    
    mysql> SELECT COUNT(*)  
              FROM ML_SCHEMA_root.model_object_catalog 
              WHERE model_handle=@onnx_model;
    +----------+
    | COUNT(*) |
    +----------+
    |        3 |
    +----------+
    1 row in set (0.01 sec)
    
    mysql> SELECT SUM(LENGTH(model_object))   
              FROM ML_SCHEMA_root.model_object_catalog 
              WHERE model_handle=@onnx_model;
    +---------------------------+
    | SUM(LENGTH(model_object)) |
    +---------------------------+
    |                2148494845 |
    +---------------------------+
    1 row in set (57.36 sec)