The binary log contains “events” that describe
database changes such as table creation operations or changes to
table data. It also contains events for statements that
potentially could have made changes (for example, a
DELETE
which matched no rows),
unless row-based logging is used. The binary log also contains
information about how long each statement took that updated data.
The binary log has two important purposes:
For replication, the binary log on a replication source server provides a record of the data changes to be sent to replicas. The source sends the events contained in its binary log to its replicas, which execute those events to make the same data changes that were made on the source. See Section 16.2, “Replication Implementation”.
Certain data recovery operations require use of the binary log. After a backup has been restored, the events in the binary log that were recorded after the backup was made are re-executed. These events bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time (Incremental) Recovery”.
The binary log is not used for statements such as
SELECT
or
SHOW
that do not modify data. To
log all statements (for example, to identify a problem query), use
the general query log. See Section 5.4.3, “The General Query Log”.
Running a server with binary logging enabled makes performance slightly slower. However, the benefits of the binary log in enabling you to set up replication and for restore operations generally outweigh this minor performance decrement.
The binary log is generally resilient to unexpected halts because only complete transactions are logged or read back. See Section 16.3.2, “Handling an Unexpected Halt of a Replica” for more information.
Passwords in statements written to the binary log are rewritten by the server not to occur literally in plain text. See also Section 6.1.2.3, “Passwords and Logging”.
The following discussion describes some of the server options and variables that affect the operation of binary logging. For a complete list, see Section 16.1.6.4, “Binary Logging Options and Variables”.
To enable the binary log, start the server with the
--log-bin[=
option. If no base_name
]base_name
value is given,
the default name is the value of the
--pid-file
option (which by default
is the name of host machine) followed by -bin
.
If the base name is given, the server writes the file in the data
directory unless the base name is given with a leading absolute
path name to specify a different directory. It is recommended that
you specify a base name explicitly rather than using the default
of the host name; see Section B.3.7, “Known Issues in MySQL”, for the
reason.
If you supply an extension in the log name (for example,
--log-bin=
),
the extension is silently removed and ignored.
base_name.extension
mysqld appends a numeric extension to the binary log base name to generate binary log file names. The number increases each time the server creates a new log file, thus creating an ordered series of files. The server creates a new file in the series each time any of the following events occurs:
The server is started or restarted
The server flushes the logs.
The size of the current log file reaches
max_binlog_size
.
A binary log file may become larger than
max_binlog_size
if you are using
large transactions because a transaction is written to the file in
one piece, never split between files.
To keep track of which binary log files have been used,
mysqld also creates a binary log index file
that contains the names of the binary log files. By default, this
has the same base name as the binary log file, with the extension
'.index'
. You can change the name of the binary
log index file with the
--log-bin-index[=
option. You should not manually edit this file while
mysqld is running; doing so would confuse
mysqld.
file_name
]
The term “binary log file” generally denotes an individual numbered file containing database events. The term “binary log” collectively denotes the set of numbered binary log files plus the index file.
A client that has privileges sufficient to set restricted session
system variables (see
Section 5.1.8.1, “System Variable Privileges”) can disable binary
logging of its own statements by using a
SET
sql_log_bin=OFF
statement.
By default, the server logs the length of the event as well as the
event itself and uses this to verify that the event was written
correctly. You can also cause the server to write checksums for
the events by setting the
binlog_checksum
system variable.
When reading back from the binary log, the source uses the event
length by default, but can be made to use checksums if available
by enabling the
master_verify_checksum
system
variable. The replication I/O thread also verifies events received
from the source. You can cause the replication SQL thread to use
checksums if available when reading from the relay log by enabling
the slave_sql_verify_checksum
system variable.
The format of the events recorded in the binary log is dependent on the binary logging format. Three format types are supported, row-based logging, statement-based logging and mixed-base logging. The binary logging format used depends on the MySQL version. For general descriptions of the logging formats, see Section 5.4.4.1, “Binary Logging Formats”. For detailed information about the format of the binary log, see MySQL Internals: The Binary Log.
The server evaluates the
--binlog-do-db
and
--binlog-ignore-db
options in the
same way as it does the
--replicate-do-db
and
--replicate-ignore-db
options. For
information about how this is done, see
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”.
A replica by default does not write to its own binary log any data
modifications that are received from the source. To log these
modifications, start the replica with the
--log-slave-updates
option in
addition to the --log-bin
option
(see Section 16.1.6.3, “Replica Server Options and Variables”). This is done
when a replica is also to act as a source to other replicas in
chained replication.
You can delete all binary log files with the
RESET MASTER
statement, or a subset
of them with PURGE BINARY LOGS
. See
Section 13.7.6.6, “RESET Statement”, and Section 13.4.1.1, “PURGE BINARY LOGS Statement”.
If you are using replication, you should not delete old binary log
files on the source until you are sure that no replica still needs
to use them. For example, if your replicas never run more than
three days behind, once a day you can execute mysqladmin
flush-logs binary on the source and then remove any logs
that are more than three days old. You can remove the files
manually, but it is preferable to use PURGE
BINARY LOGS
, which also safely updates the binary log
index file for you (and which can take a date argument). See
Section 13.4.1.1, “PURGE BINARY LOGS Statement”.
You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you want to reprocess statements in the log for a recovery operation. For example, you can update a MySQL server from the binary log as follows:
$> mysqlbinlog log_file | mysql -h server_name
mysqlbinlog also can be used to display relay log file contents because they are written using the same format as binary log files. For more information on the mysqlbinlog utility and how to use it, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental) Recovery”.
Binary logging is done immediately after a statement or transaction completes but before any locks are released or any commit is done. This ensures that the log is logged in commit order.
Updates to nontransactional tables are stored in the binary log immediately after execution.
Within an uncommitted transaction, all updates
(UPDATE
,
DELETE
, or
INSERT
) that change transactional
tables such as InnoDB
tables are cached until a
COMMIT
statement is received by the
server. At that point, mysqld writes the entire
transaction to the binary log before the
COMMIT
is executed.
Modifications to nontransactional tables cannot be rolled back. If
a transaction that is rolled back includes modifications to
nontransactional tables, the entire transaction is logged with a
ROLLBACK
statement at the end to ensure that the modifications to those
tables are replicated.
When a thread that handles the transaction starts, it allocates a
buffer of binlog_cache_size
to
buffer statements. If a statement is bigger than this, the thread
opens a temporary file to store the transaction. The temporary
file is deleted when the thread ends.
The Binlog_cache_use
status
variable shows the number of transactions that used this buffer
(and possibly a temporary file) for storing statements. The
Binlog_cache_disk_use
status
variable shows how many of those transactions actually had to use
a temporary file. These two variables can be used for tuning
binlog_cache_size
to a large
enough value that avoids the use of temporary files.
The max_binlog_cache_size
system
variable (default 4GB, which is also the maximum) can be used to
restrict the total size used to cache a multiple-statement
transaction. If a transaction is larger than this many bytes, it
fails and rolls back. The minimum value is 4096.
If you are using the binary log and row based logging, concurrent
inserts are converted to normal inserts for CREATE ...
SELECT
or
INSERT ...
SELECT
statements. This is done to ensure that you can
re-create an exact copy of your tables by applying the log during
a backup operation. If you are using statement-based logging, the
original statement is written to the log.
The binary log format has some known limitations that can affect recovery from backups. See Section 16.4.1, “Replication Features and Issues”.
Binary logging for stored programs is done as described in Section 23.7, “Stored Program Binary Logging”.
Note that the binary log format differs in MySQL 5.7 from previous versions of MySQL, due to enhancements in replication. See Section 16.4.2, “Replication Compatibility Between MySQL Versions”.
If the server is unable to write to the binary log, flush binary
log files, or synchronize the binary log to disk, the binary log
on the source can become inconsistent and replicas can lose
synchronization with the source. The
binlog_error_action
system
variable controls the action taken if an error of this type is
encountered with the binary log.
The default setting,
ABORT_SERVER
, makes the server halt binary logging and shut down. At this point, you can identify and correct the cause of the error. On restart, recovery proceeds as in the case of an unexpected server halt (see Section 16.3.2, “Handling an Unexpected Halt of a Replica”).The setting
IGNORE_ERROR
provides backward compatibility with older versions of MySQL. With this setting, the server continues the ongoing transaction and logs the error, then halts binary logging, but continues to perform updates. At this point, you can identify and correct the cause of the error. To resume binary logging,log_bin
must be enabled again, which requires a server restart. Only use this option if you require backward compatibility, and the binary log is non-essential on this MySQL server instance. For example, you might use the binary log only for intermittent auditing or debugging of the server, and not use it for replication from the server or rely on it for point-in-time restore operations.
By default, the binary log is synchronized to disk at each write
(sync_binlog=1
). If
sync_binlog
was not enabled, and
the operating system or machine (not only the MySQL server)
crashed, there is a chance that the last statements of the binary
log could be lost. To prevent this, enable the
sync_binlog
system variable to
synchronize the binary log to disk after every
N
commit groups. See
Section 5.1.7, “Server System Variables”. The safest value for
sync_binlog
is 1 (the default),
but this is also the slowest.
For example, if you are using InnoDB
tables and
the MySQL server processes a COMMIT
statement, it writes many prepared transactions to the binary log
in sequence, synchronizes the binary log, and then commits this
transaction into InnoDB
. If the server
unexpectedly exits between those two operations, the transaction
is rolled back by InnoDB
at restart but still
exists in the binary log. Such an issue is resolved assuming
--innodb_support_xa
is set to 1,
the default. Although this option is related to the support of XA
transactions in InnoDB
, it also ensures that
the binary log and InnoDB data files are synchronized. For this
option to provide a greater degree of safety, the MySQL server
should also be configured to synchronize the binary log and the
InnoDB
logs to disk before committing the
transaction. The InnoDB
logs are synchronized
by default, and sync_binlog=1
can be used to
synchronize the binary log. The effect of this option is that at
restart after a crash, after doing a rollback of transactions, the
MySQL server scans the latest binary log file to collect
transaction xid
values and calculate
the last valid position in the binary log file. The MySQL server
then tells InnoDB
to complete any prepared
transactions that were successfully written to the to the binary
log, and truncates the binary log to the last valid position. This
ensures that the binary log reflects the exact data of
InnoDB
tables, and therefore the replica
remains in synchrony with the source because it does not receive a
statement which has been rolled back.
innodb_support_xa
is
deprecated; expect it to be removed in a future release.
InnoDB
support for two-phase commit in XA
transactions is always enabled as of MySQL 5.7.10.
If the MySQL server discovers at crash recovery that the binary
log is shorter than it should have been, it lacks at least one
successfully committed InnoDB
transaction. This
should not happen if sync_binlog=1
and the
disk/file system do an actual sync when they are requested to
(some do not), so the server prints an error message The
binary log
. In this case, this binary log is not
correct and replication should be restarted from a fresh snapshot
of the source's data.
file_name
is shorter than
its expected size
The session values of the following system variables are written to the binary log and honored by the replica when parsing the binary log:
sql_mode
(except that theNO_DIR_IN_CREATE
mode is not replicated; see Section 16.4.1.37, “Replication and Variables”)