If you choose not to Load Structured Data Using Lakehouse Auto Parallel Load, you can load external data manually.
This topic contains the following sections:
-
Prepare to load data by reviewing the following:
Review Lakehouse External Table Syntax for loading data manually.
Depending on the version of MySQL you are using, use the
appropriate CREATE TABLE
statement.
As of MySQL 9.4.0, you can use the
CREATE EXTERNAL TABLE
statement, which automatically setsENGINE
tolakehouse
, andSECONDARY_ENGINE
torapid
.In versions earlier than MySQL 9.4.0, you must use the
CREATE TABLE
statement, and manually setENGINE
tolakehouse
, andSECONDARY_ENGINE
torapid
.
For example, you can use the following command in MySQL 9.4.0:
mysql> CREATE EXTERNAL TABLE table_1(col_1 int, col_2 int, col_3 int)
ENGINE_ATTRIBUTE='{"dialect": {"format": "csv"},
"file": [{"uri": "oci://mybucket@mynamespace/data_files/data_file_1.csv"}]}';
For earlier versions, you must use the following command:
mysql> CREATE TABLE table_1(col_1 int, col_2 int, col_3 int)
ENGINE=lakehouse
SECONDARY_ENGINE = rapid
ENGINE_ATTRIBUTE='{"dialect": {"format": "csv"},
"file": [{"uri": "oci://mybucket@mynamespace/data_files/data_file_1.csv"}]}';
As of MySQL 9.4.0, you can set options when creating external tables using SQL syntax. For earlier versions, you must set options using JSON syntax.
The following example sets options usings SQL syntax:
mysql> CREATE EXTERNAL TABLE table_1(col_1 int, col_2 int, col_3 int)
FILE_FORMAT = (FORMAT csv)
FILES = (URI = 'oci://mybucket@mynamespace/data_files/data_file_1.csv');
The following example sets options using JSON syntax:
mysql> CREATE EXTERNAL TABLE table_1(col_1 int, col_2 int, col_3 int)
ENGINE_ATTRIBUTE='{"dialect": {"format": "csv"},
"file": [{"uri": "oci://mybucket@mynamespace/data_files/data_file_1.csv"}]}';
To review external table options in JSON syntax, see Lakehouse External Table JSON Syntax.
To review external table options in SQL syntax, see Lakehouse External Table SQL Syntax.
To load an external table into MySQL HeatWave, specify the
SECONDARY_LOAD
clause in an
ALTER TABLE
statement and use
the following syntax.
ALTER TABLE table_name SECONDARY_LOAD [GUIDED {ON | OFF}];
Specify the following clauses in the
ALTER TABLE
statement:
table_name
: Specify the name of the table to load to MySQL HeatWave.GUIDED
: Available as of MySQL 9.4.1. Allows you to disable and enable Guided Load as needed. Set toOFF
to disable Guided Load. By default, Guided Load is enabled.
Available as of MySQL 8.2.0, the Guided Load feature performs a set of checks and validations before loading data.
These checks include the following:
Automatically detect tables and columns that cannot be loaded. If there are tables and columns that are not compatible, stop the load.
Automatically set
SECONDARY_ENGINE
torapid
.Detect any errors with
ENGINE_ATTRIBUTE
and report them.Infer the table definition and make any necessary adjustments before loading data. These adjustments are similar to those performed by Autopilot during Lakehouse Auto Parallel Load. See: About Lakehouse Auto Parallel Load Schema Inference. If the inferred table definition is not compatible, stop the load.
Predict the amount of memory required for loading data. If the required memory is not available, stop the load.
Infer the record and field delimiters for CSV files and make the necessary adjustments.
As of MySQL 9.4.1, you have the option to disable Guided Load if you want to skip these checks.
The following example manually creates an external table, and then loads the table into MySQL HeatWave with Guided Load disabled:
mysql> CREATE EXTERNAL TABLE table_1(col_1 int, col_2 int, col_3 int)
FILE_FORMAT = (FORMAT csv)
FILES = (URI = 'oci://mybucket@mynamespace/data_files/data_file_1.csv');
mysql> ALTER TABLE table_1 SECONDARY_LOAD GUIDED OFF;
To demonstrate how to load data manually, the following example loads a single file and selects to use a pre-authenticated request (PAR).
The CSV file in this example is from
Bank
Marketing. To use this file, visit
Bank
Marketing and download the
bank+marketing.zip
file. Unzip the file,
and then unzip the bank.zip
file. Refer
to the bank.csv
file.
To load external data manually:
Prepare the files to load in the proper format. See Supported File Formats.
Upload the files to load into Object Storage. See Uploading an Object Storage Object to a Bucket in Oracle Cloud Infrastructure Documentation.
-
Select the method to load the files: PAR, resource principals, or uniform resource identifier (URI). To learn more about each method, see the following:
-
In the terminal window, create and use the database to store the table.
mysql> CREATE DATABASE bank_data; mysql> USE DATABASE bank_data;
-
Set up the
CREATE TABLE
statement and theENGINE_ATTRIBUTE
options to specify the parameters needed to process the external files. As of MySQL 9.4.0, you can use theCREATE EXTERNAL TABLE
statement. In versions earlier than 9.4.0, you must use theCREATE TABLE
statement and setENGINE
tolakehouse
, andSECONDARY_ENGINE
torapid
. See CREATE TABLE Statement.Ensure that the table has the correct data type for each column. For this example, columns are defined according to the data in the
bank.csv
file. See the following to learn more:As of MySQL 9.4.0, you can use SQL syntax to set options for external tables. For earlier versions, you must set options using JSON syntax. To learn more, see Lakehouse External Table JSON Syntax and Lakehouse External Table SQL Syntax.
The following example uses JSON syntax:
mysql> CREATE EXTERNAL TABLE bank_marketing( age int, job varchar(255), marital varchar(255), education varchar(255), default1 varchar(255), balance float, housing varchar(255), loan varchar(255), contact varchar(255), day int, month varchar(255), duration float, campaign int, pdays float, previous float, poutcome varchar(255), y varchar(255) ) ENGINE_ATTRIBUTE='{"dialect": {"format": "csv", "has_header": true}, "file": [{ "par": "https://objectstorage.us-ashburn-1.oraclecloud.com/p/.../n/tenant_1/b/bucket_1/o/bank.csv"}]}';
Where:
The
CREATE EXTERNAL TABLE
statement creates the tablebank_marketing
and automatically setsENGINE
tolakehouse
, andSECONDARY_ENGINE
torapid
.Each column for the table is defined according to the
bank.csv
file.format
defines the format of the external file:csv
.has_header
identifies a header in the external file.par
sets the pre-authenticated request link to access the file. Replace the PAR in the example with your own.
The following example uses SQL syntax:
mysql> CREATE EXTERNAL TABLE bank_marketing( age int, job varchar(255), marital varchar(255), education varchar(255), default1 varchar(255), balance float, housing varchar(255), loan varchar(255), contact varchar(255), day int, month varchar(255), duration float, campaign int, pdays float, previous float, poutcome varchar(255), y varchar(255) ) FILE_FORMAT = (FORMAT csv HEADER ON) FILES = (URL = 'https://objectstorage.us-ashburn-1.oraclecloud.com/p/.../n/tenant_1/b/bucket_1/o/bank.csv');
If you are on MySQL 9.1.2 and earlier, you need to update
dialect
with thefield delimiter
andrecord delimiter
parameters. As of MySQL 9.2.0, MySQL HeatWave Lakehouse can automatically detect these values. See Lakehouse External Table Syntax to learn more. -
Use the
ALTER TABLE
andSECONDARY_LOAD
commands to load the data and create the external table.mysql> ALTER TABLE bank_marketing SECONDARY_LOAD; Warning (code 3877): Command executed during preprocessing: 'ALTER TABLE `bank_data`.`bank_marketing` ENGINE_ATTRIBUTE='{"file": [{"par": "https://objectstorage.us-ashburn-1.oraclecloud.com/p/.../n/tenant_1/b/bucket_1/o/bank.csv"}], "dialect": {"format": "csv", "has_header": true, "field_delimiter": ";", "record_delimiter": "\\n"}}''.
Review the message to confirm the external table is successfully created. For MySQL 9.1.2 and later, you can also review the
field_delimiter
andrecord_delimiter
values that MySQL HeatWave automatically detected for the table. -
Optionally, query five rows of the table to confirm the data is loaded and accessible.
mysql> SELECT * FROM bank_marketing.bank_train LIMIT 5; +-----+-------------+----------+-----------+----------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+----+ | age | job | marital | education | default1 | balance | housing | loan | contact | day | month | duration | campaign | pdays | previous | poutcome | y | +-----+-------------+----------+-----------+----------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+----+ | 37 | services | married | secondary | no | 4760 | yes | no | cellular | 8 | may | 182 | 2 | 169 | 2 | failure | no | | 32 | technician | single | secondary | no | 2979 | no | no | cellular | 25 | may | 156 | 1 | -1 | 0 | unknown | no | | 43 | management | married | tertiary | no | 690 | yes | no | cellular | 6 | aug | 171 | 3 | -1 | 0 | unknown | no | | 50 | blue-collar | divorced | secondary | no | 203 | yes | no | telephone | 19 | nov | 265 | 1 | 127 | 4 | other | no | | 34 | blue-collar | married | secondary | no | 322 | yes | no | cellular | 20 | apr | 10 | 3 | -1 | 0 | unknown | no | +-----+-------------+----------+-----------+----------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+----+
Once you confirm the table successfully loaded into Lakehouse, you can use the data for the following: