This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many extensions to the SQL standard, and here you can find out what they are and how to use them. You can also find information about functionality missing from MySQL Server, and how to work around some of the differences.
The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992. “SQL:1999”, “SQL:2003”, “SQL:2008”, and “SQL:2011” refer to the versions of the standard released in the corresponding years, with the last being the most recent version. We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard at any time.
One of our main goals with the product is to continue to work
toward compliance with the SQL standard, but without sacrificing
speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the
usability of MySQL Server for a large segment of our user base.
The HANDLER
interface is an example
of this strategy. See Section 13.2.4, “HANDLER Statement”.
We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7 usage and heavy Web or logging usage.
MySQL Server was originally designed to work with medium-sized databases (10-100 million rows, or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded devices. The compact design of the MySQL server makes development in both directions possible without any conflicts in the source tree.
We are not targeting real-time support, although MySQL replication capabilities offer significant functionality.
MySQL supports ODBC levels 0 to 3.51.
MySQL supports high-availability database clustering using the
NDBCLUSTER
storage engine. See
Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6.
We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11, “XML Functions”.
MySQL (5.7.8 and later) supports a native JSON data type as defined by RFC 7159, and based on the ECMAScript standard (ECMA-262). See Section 11.5, “The JSON Data Type”. MySQL also implements a subset of the SQL/JSON functions specified by a pre-publication draft of the SQL:2016 standard; see Section 12.17, “JSON Functions”, for more information.
Selecting SQL Modes
The MySQL server can operate in different SQL modes, and can apply
these modes differently for different clients, depending on the
value of the sql_mode
system
variable. DBAs can set the global SQL mode to match site server
operating requirements, and each application can set its session
SQL mode to its own requirements.
Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers.
For more information on setting the SQL mode, see Section 5.1.10, “Server SQL Modes”.
Running MySQL in ANSI Mode
To run MySQL Server in ANSI mode, start mysqld
with the --ansi
option. Running the
server in ANSI mode is the same as starting it with the following
options:
--transaction-isolation=SERIALIZABLE --sql-mode=ANSI
To achieve the same effect at runtime, execute these two statements:
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';
You can see that setting the
sql_mode
system variable to
'ANSI'
enables all SQL mode options that are
relevant for ANSI mode as follows:
mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@GLOBAL.sql_mode;
-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'
Running the server in ANSI mode with
--ansi
is not quite the same as
setting the SQL mode to 'ANSI'
because the
--ansi
option also sets the
transaction isolation level.