The
find(
function is for searching documents in a collection, similar to
the SELECT statement for an SQL
database. It takes a search condition string
(SearchConditionStr) as a parameter
to specify the documents that should be returned from the
database. The SearchConditionStr
)execute()
function triggers the
actual execution of the find()
operation.
The SearchConditionStr can be in one of these forms:
-
If no SearchConditionStr is specified, the
find()
operation returns all the documents in the collection.// Get a collection var myColl = session.getSchema("world_x").getCollection("countryinfo"); // To return all documents in world_x: myColl.find().execute();
-
The most common form for a SearchConditionStr is:
JSON-path [ operator { value | JSON-path} ]
Here are some explanations for the different parts of a SearchConditionStr:
-
JSON-path
: A JSON path identifies an element in a JSON document; see JSON Path Syntax for details . Here is a short summary of the JSON path syntax:-
A JSON path starts with a scope: in MySQL's JSON document implementation, the scope of the path is always the document being operated on, represented as
$
, which is always implicitly assumed, so it can be skipped in most cases; for example, the path$.geography.Region
is equivalent togeography.Region
.NoteIn some cases,
$
cannot be omitted; for example:When the
**
wildcard is used (for example,find("$**.b1")
; see the discussion on wildcards below),When the JSON path only contains a literal string if
$
is omitted (for example,find("$.'country_name'")
for finding all documents that have acountry name
field.
After the scope, a path consists of one or more path legs. A path leg leads from one level of the JSON tree down to the next, and consecutive paths are separated by a period (
.
). For example:myColl.find("geography.Continent = 'Africa'")
finds all documents that have the valueAfrica
for the fieldContinent
under the fieldgeography
.-
Elements in arrays are represented by
[
, whereN
]N
is an array index, which has to be a non-negative integer.myColl.add({ name:'John', favorNums: [1, 3, 5, 7, 9] }).execute(); myColl.find("favorNums[0] = 1").execute(); //Returns the document just added }
-
-
The wildcard tokens
*
and**
can be used in JSON paths as follows:
represents the values of all members under the memberobject
.*object
. For example, in thecountryinfo
collection in the sampleworld_x
schema,geography.*
represents all members under the objectgeography
, andmyColl.find("'Africa' in geography.*")
returns all documents that have the valueAfrica
in any of the members undergeography
.-
represents the values of all elements in an array. For example:array
[*]myColl.add({ name:'John', favorNums: [1, 3, 5, 7, 9] }).execute(); myColl.add({ name:'Jane', favorNums: [2, 4, 6, 8, 10] }).execute(); myColl.find("1 in favorNums[*]").execute(); //Returns the first document added above myColl.find("2 in favorNums[*]").execute(); //Returns the second document added above }
-
[
represents all paths under the documentprefix
]**suffix
prefix
that end withsuffix
, regardless of the depth of the path. The following examples illustrate how ** can be used to return different results:mysql-js> myColl.find().execute(); { "a": "bar", "b": { "b1": 6, "b2": 7, "b3": { "b1": 99, "b2": 98, "b3": { "b1": 999, "b2": 998 } } }, "_id": "000061313aa10000000000000001" } { "a": "baz", "b": { "b1": 1, "b2": 7 }, "_id": "000061313aa10000000000000002" } { "a": "bbr", "c": 37, "_id": "0000613247ed0000000000000001" } 3 documents in set (0.0007 sec) mysql-js> myColl.find("$**.b2").execute(); { "a": "bar", "b": { "b1": 6, "b2": 7, "b3": { "b1": 99, "b2": 98, "b3": { "b1": 999, "b2": 998 } } }, "_id": "000061313aa10000000000000001" } { "a": "baz", "b": { "b1": 1, "b2": 7 }, "_id": "000061313aa10000000000000002" } 2 documents in set, 1 warning (0.0008 sec) ... mysql-js> myColl.find("$**.b3**.b2").execute(); { "a": "bar", "b": { "b1": 6, "b2": 7, "b3": { "b1": 99, "b2": 98, "b3": { "b1": 999, "b2": 998 } } }, "_id": "000061313aa10000000000000001" } 1 document in set, 1 warning (0.0011 sec) ...
The following requirements apply when using the
**
wildcard:prefix
should be$
or an element that is a document itself.suffix
should be a path leg and is always required (that is, a path expression may not end in**
).A path expression may not contain the sequence
***
.
-
value
is a value to be compared to an element on theJSON-path
. The%
and_
wildcard characters can be used invalue
with theLIKE
operator, just like in a MySQLWHERE
clause. For example:myColl.find("Name LIKE 'Austra%'") myColl.find("geography.Continent LIKE 'Asi_'")
-
operator
: The following operators can be used in a SearchConditionStr:OR (||)
,AND (&&)
,XOR
,IS
,NOT
,BETWEEN
,IN
,LIKE
,OVERLAPS
,!=
,<>
,>
,>=
,<
,<=
,&
,|
,<<
,>>
,+
,-
,*
,/
,~
, and%
. Here are some examples for using the operators:myColl.find("Name = 'Australia'") myColl.find("demographics.Population >= 1000000" ) myColl.find("demographics.LifeExpectancy BETWEEN 50 AND 60") myColl.find("government.HeadOfState = 'Elizabeth II' AND geography.Region = 'Caribbean'")
If no operator and subsequent JSON path is supplied,
find()
returns all documents for which the JSON path supplied points to some non-null elements. For example:myColl.find("demographics.Population" ).execute();
Returns all documents that have a
demographics.Population
element:{ "GNP": 828, "_id": "00005de917d80000000000000000", "Code": "ABW", "Name": "Aruba", "IndepYear": null, "geography": { "Region": "Caribbean", "Continent": "North America", "SurfaceArea": 193 }, "government": { "HeadOfState": "Beatrix", "GovernmentForm": "Nonmetropolitan Territory of The Netherlands" }, "demographics": { "Population": 103000, "LifeExpectancy": 78.4000015258789 } } { "GNP": 5976, "_id": "00005de917d80000000000000001", ... 232 documents in set, 1 warning (0.0013 sec) Warning (code 3986): Evaluating a JSON value in SQL boolean context does an implicit comparison against JSON integer 0; if this is not what you want, consider converting JSON to an SQL numeric type with JSON_VALUE RETURNING
Use the
IN
operator in the SearchConditionStr to check for a value within all the members covered by a wildcard:mysql-js> myColl.find("$**.b1").execute(); { "a": "bar", "b": { "b1": 6, "b2": 7, "b3": { "b1": 99, "b2": 98, "b3": { "b1": 999, "b2": 998 } } }, "_id": "000061313aa10000000000000001" } { "a": "baz", "b": { "b1": 1, "b2": 7 }, "_id": "000061313aa10000000000000002" } 2 documents in set, 1 warning (0.0012 sec) ... mysql-js> myColl.find("99 IN $**.b1").execute(); { "a": "bar", "b": { "b1": 6, "b2": 7, "b3": { "b1": 99, "b2": 98, "b3": { "b1": 999, "b2": 998 } } }, "_id": "000061313aa10000000000000001" } 1 document in set (0.0016 sec) ...
The
OVERLAPS
operator compares two JSON fragments and returns true (1) if the two fragments have any values in any key-value pair or array element in common. For example:mysql-js> myColl.find("list").execute(); { "_id": "1", "list": [ 1, 4 ] } { "_id": "2", "list": [ 4, 7 ] } 2 documents in set, 1 warning (0.0010 sec) mysql-js> myColl.find("[1,2,3] OVERLAPS $.list") { "_id": "1", "list": [ 1, 4 ] } 1 document in set (0.0006 sec)
-
Several methods such as fields()
,
sort()
, and limit()
can be chained to the
find()
function to further refine the result.
For example:
myColl.find("Name LIKE 'Austra%'").fields("Code")
myColl.find("geography.Continent LIKE 'A%'").limit(10)
Parameter binding using bind()
is also
supported. The following example illustrates the use of
bind()
with find()
:
# Use the collection 'my_collection'
myColl = db.get_collection('my_collection')
# Find a single document that has a field 'name' that starts with 'L'
docs = myColl.find('name like :param').limit(1).bind('param', 'L%').execute()
print(docs.fetch_one())
# Get all documents with a field 'name' that starts with 'L'
docs = myColl.find('name like :param').bind('param','L%').execute()
myDoc = docs.fetch_one()
while myDoc:
print(myDoc)
myDoc = docs.fetch_one()
See also CollectionFindFunction for
the syntax of find()
in EBNF.