The BINARY
and VARBINARY
types are similar to CHAR
and
VARCHAR
, except that they store
binary strings rather than nonbinary strings. That is, they
store byte strings rather than character strings. This means
they have the binary
character set and
collation, and comparison and sorting are based on the numeric
values of the bytes in the values.
The permissible maximum length is the same for
BINARY
and VARBINARY
as it
is for CHAR
and
VARCHAR
, except that the length
for BINARY
and VARBINARY
is measured in bytes rather than characters.
The BINARY
and VARBINARY
data types are distinct from the CHAR BINARY
and VARCHAR BINARY
data types. For the latter
types, the BINARY
attribute does not cause
the column to be treated as a binary string column. Instead, it
causes the binary (_bin
) collation for the
column character set (or the table default character set if no
column character set is specified) to be used, and the column
itself stores nonbinary character strings rather than binary
byte strings. For example, if the default character set is
latin1
, CHAR(5) BINARY
is
treated as CHAR(5) CHARACTER SET latin1 COLLATE
latin1_bin
. This differs from
BINARY(5)
, which stores 5-byte binary strings
that have the binary
character set and
collation. For information about the differences between the
binary
collation of the
binary
character set and the
_bin
collations of nonbinary character sets,
see Section 10.8.5, “The binary Collation Compared to _bin Collations”.
If strict SQL mode is not enabled and you assign a value to a
BINARY
or VARBINARY
column
that exceeds the column's maximum length, the value is truncated
to fit and a warning is generated. For cases of truncation, to
cause an error to occur (rather than a warning) and suppress
insertion of the value, use strict SQL mode. See
Section 5.1.10, “Server SQL Modes”.
When BINARY
values are stored, they are
right-padded with the pad value to the specified length. The pad
value is 0x00
(the zero byte). Values are
right-padded with 0x00
for inserts, and no
trailing bytes are removed for retrievals. All bytes are
significant in comparisons, including ORDER
BY
and DISTINCT
operations.
0x00
and space differ in comparisons, with
0x00
sorting before space.
Example: For a BINARY(3)
column,
'a '
becomes
'a \0'
when inserted.
'a\0'
becomes 'a\0\0'
when
inserted. Both inserted values remain unchanged for retrievals.
For VARBINARY
, there is no padding for
inserts and no bytes are stripped for retrievals. All bytes are
significant in comparisons, including ORDER
BY
and DISTINCT
operations.
0x00
and space differ in comparisons, with
0x00
sorting before space.
For those cases where trailing pad bytes are stripped or
comparisons ignore them, if a column has an index that requires
unique values, inserting values into the column that differ only
in number of trailing pad bytes results in a duplicate-key
error. For example, if a table contains 'a'
,
an attempt to store 'a\0'
causes a
duplicate-key error.
You should consider the preceding padding and stripping
characteristics carefully if you plan to use the
BINARY
data type for storing binary data and
you require that the value retrieved be exactly the same as the
value stored. The following example illustrates how
0x00
-padding of BINARY
values affects column value comparisons:
mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)
mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)
If the value retrieved must be the same as the value specified
for storage with no padding, it might be preferable to use
VARBINARY
or one of the
BLOB
data types instead.
Within the mysql client, binary strings
display using hexadecimal notation, depending on the value of
the --binary-as-hex
. For more
information about that option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.