Documentation Home
MySQL 5.5 Reference Manual
Related Documentation Download this Manual Excerpts from this Manual

MySQL 5.5 Reference Manual  /  ...  /  NDB Cluster Replication Conflict Resolution

18.6.11 NDB Cluster Replication Conflict Resolution

When using a replication setup involving multiple masters (including circular replication), it is possible that different masters may try to update the same row on the slave with different data. Conflict resolution in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-defined resolution column to be used to determine whether or not an update on a given master should be applied on the slave.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), NDB$MAX_DELETE_WIN()) implement this user-defined column as a timestamp column (although its type cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution are always applied a row-by-row basis rather than a transactional basis. The epoch-based conflict resolution functions introduced in NDB 7.2.1 (NDB$EPOCH() and NDB$EPOCH_TRANS()) compare the order in which epochs are replicated (and thus these functions are transactional). Different methods can be used to compare resolution column values on the slave when conflicts occur, as explained later in this section; the method used can be set on a per-table basis.

You should also keep in mind that it is the application's responsibility to ensure that the resolution column is correctly populated with relevant values, so that the resolution function can make the appropriate choice when determining whether to apply an update.

Requirements.  Preparations for conflict resolution must be made on both the master and the slave. These tasks are described in the following list:

  • On the master writing the binary logs, you must determine which columns are sent (all columns or only those that have been updated). This is done for the MySQL Server as a whole by applying the mysqld startup option --ndb-log-updated-only (described later in this section) or on a per-table basis by entries in the mysql.ndb_replication table (see The ndb_replication system table).


    If you are replicating tables with very large columns (such as TEXT or BLOB columns), --ndb-log-updated-only can also be useful for reducing the size of the master and slave binary logs and avoiding possible replication failures due to exceeding max_allowed_packet.

    See Section, “Replication and max_allowed_packet”, for more information about this issue.

  • On the slave, you must determine which type of conflict resolution to apply (latest timestamp wins, same timestamp wins, primary wins, primary wins, complete transaction, or none). This is done using the mysql.ndb_replication system table, on a per-table basis (see The ndb_replication system table).

  • Prior to NDB 7.2.5, conflict detection and resolution did not always work properly unless set up for NDB tables created on the same server only (Bug #13578660).

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-based conflict resolution, we often refer to the column used for determining updates as a timestamp column. However, the data type of this column is never TIMESTAMP; instead, its data type should be INT (INTEGER) or BIGINT. The timestamp column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by comparing the relative order of replication epochs applied on a primary and secondary NDB Cluster, and do not make use of timestamps.

Master column control.  We can see update operations in terms of before and after images—that is, the states of the table before and after the update is applied. Normally, when updating a table with a primary key, the before image is not of great interest; however, when we need to determine on a per-update basis whether or not to use the updated values on a replication slave, we need to make sure that both images are written to the master's binary log. This is done with the --ndb-log-update-as-write option for mysqld, as described later in this section.


Whether logging of complete rows or of updated columns only is done is decided when the MySQL server is started, and cannot be changed online; you must either restart mysqld, or start a new mysqld instance with different logging options.

Logging Full or Partial Rows (--ndb-log-updated-only Option)

Command-Line Format--ndb-log-updated-only
System VariableNamendb_log_updated_only
Variable ScopeGlobal
Dynamic VariableYes
Permitted ValuesTypeboolean

For purposes of conflict resolution, there are two basic methods of logging rows, as determined by the setting of the --ndb-log-updated-only option for mysqld:

  • Log complete rows

  • Log only column data that has been updated—that is, column data whose value has been set, regardless of whether or not this value was actually changed. This is the default behavior.

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

--ndb-log-update-as-write Option: Logging Changed Data as Updates

Command-Line Format--ndb-log-update-as-write
System VariableNamendb_log_update_as_write
Variable ScopeGlobal
Dynamic VariableYes
Permitted ValuesTypeboolean

The setting of the MySQL Server's --ndb-log-update-as-write option determines whether logging is performed with or without the before image. Because conflict resolution is done in the MySQL Server's update handler, it is necessary to control logging on the master such that updates are updates and not writes; that is, such that updates are treated as changes in existing rows rather than the writing of new rows (even though these replace existing rows). This option is turned on by default; in other words, updates are treated as writes. (That is, updates are by default written as write_row events in the binary log, rather than as update_row events.)

To turn off the option, start the master mysqld with --ndb-log-update-as-write=0 or --ndb-log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using a different storage engine; see Replication from NDB to other storage engines.

Conflict resolution control.  Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method selection, it is enabled by entries in the mysql.ndb_replication table.

The ndb_replication system table.  To enable conflict resolution, it is necessary to create an ndb_replication table in the mysql system database on the master, the slave, or both, depending on the conflict resolution type and method to be employed. This table is used to control logging and conflict resolution functions on a per-table basis, and has one row per table involved in replication. ndb_replication is created and filled with control information on the server where the conflict is to be resolved. In a simple master-slave setup where data can also be changed locally on the slave this will typically be the slave. In a more complex master-master (2-way) replication schema this will usually be all of the masters involved. Each row in mysql.ndb_replication corresponds to a table being replicated, and specifies how to log and resolve conflicts (that is, which conflict resolution function, if any, to use) for that table. The definition of the mysql.ndb_replication table is shown here:

CREATE TABLE mysql.ndb_replication  (
    db VARBINARY(63),
    table_name VARBINARY(63),
    server_id INT UNSIGNED,
    binlog_type INT UNSIGNED,
    conflict_fn VARBINARY(128),
    PRIMARY KEY USING HASH (db, table_name, server_id)
PARTITION BY KEY(db,table_name);

The columns in this table are described in the next few paragraphs.

db.  The name of the database containing the table to be replicated.

Beginning with NDB 7.2.5, you may employ either or both of the wildcards _ and % as part of the database name. Matching is similar to what is implemented for the LIKE operator.

table_name.  The name of the table to be replicated.

Beginning with NDB 7.2.5, the table name may include either or both of the wildcards _ and %. Matching is similar to what is implemented for the LIKE operator.

server_id.  The unique server ID of the MySQL instance (SQL node) where the table resides.

binlog_type.  The type of binary logging to be employed. This is determined as shown in the following table:

ValueInternal ValueDescription
0NBT_DEFAULTUse server default
1NBT_NO_LOGGINGDo not log this table in the binary log
2NBT_UPDATED_ONLYOnly updated attributes are logged
3NBT_FULLLog full row, even if not updated (MySQL server default behavior)
4NBT_USE_UPDATE(For generating NBT_UPDATED_ONLY_USE_UPDATE and NBT_FULL_USE_UPDATE values only—not intended for separate use)
5[Not used]---
6NBT_UPDATED_ONLY_USE_UPDATE (equal to NBT_UPDATED_ONLY | NBT_USE_UPDATE)Use updated attributes, even if values are unchanged
7NBT_FULL_USE_UPDATE (equal to NBT_FULL | NBT_USE_UPDATE)Use full row, even if values are unchanged

conflict_fn.  The conflict resolution function to be applied. This function must be specified as one of those shown in the following list:

These functions are described in the next few paragraphs.

NDB$OLD(column_name).  If the value of column_name is the same on both the master and the slave, then the update is applied; otherwise, the update is not applied on the slave and an exception is written to the log. This is illustrated by the following pseudocode:

if (master_old_column_value == slave_current_column_value)

This function can be used for same value wins conflict resolution. This type of conflict resolution ensures that updates are not applied on the slave from the wrong master.


The column value from the master's before image is used by this function.

NDB$MAX(column_name).  If the timestamp column value for a given row coming from the master is higher than that on the slave, it is applied; otherwise it is not applied on the slave. This is illustrated by the following pseudocode:

if (master_new_column_value > slave_current_column_value)

This function can be used for greatest timestamp wins conflict resolution. This type of conflict resolution ensures that, in the event of a conflict, the version of the row that was most recently updated is the version that persists.


The column value from the master's after image is used by this function.

NDB$MAX_DELETE_WIN().  This is a variation on NDB$MAX(). Due to the fact that no timestamp is available for a delete operation, a delete using NDB$MAX() is in fact processed as NDB$OLD. However, for some use cases, this is not optimal. For NDB$MAX_DELETE_WIN(), if the timestamp column value for a given row adding or updating an existing row coming from the master is higher than that on the slave, it is applied. However, delete operations are treated as always having the higher value. This is illustrated in the following pseudocode:

if ( (master_new_column_value > slave_current_column_value)
      operation.type == "delete")

This function can be used for greatest timestamp, delete wins conflict resolution. This type of conflict resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise) most recently updated is the version that persists.


As with NDB$MAX(), the column value from the master's after image is the value used by this function.

NDB$EPOCH() and NDB$EPOCH_TRANS().  The NDB$EPOCH() function, available beginning with NDB 7.2.1, tracks the order in which replicated epochs are applied on a slave NDB Cluster relative to changes originating on the slave. This relative ordering is used to determine whether changes originating on the slave are concurrent with any changes that originate locally, and are therefore potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a two-cluster circular replication configuration (sometimes referred to as active-active replication). We refer here to cluster on which it operates as the primary, and the other as the secondary. The slave on the primary is responsible for detecting and handling conflicts, while the slave on the secondary is not involved in any conflict detection or handling.

When the slave on the primary detects conflicts, it injects events into its own binary log to compensate for these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and so keeps the primary and secondary from diverging. This compensation and realignment mechanism requires that the primary NDB Cluster always wins any conflicts with the secondary—that is, that the primary's changes are always used rather than those from the secondary in event of a conflict. This primary always wins rule has the following implications:

  • Operations that change data, once committed on the primary, are fully persistent and will not be undone or rolled back by conflict detection and resolution.

  • Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from the slave) will not be reverted later.

  • Operations that change data on the secondary may later be reverted if the primary determines that they are in conflict.

  • Individual rows read on the secondary are self-consistent at all times, each row always reflecting either a state committed by the secondary, or one committed by the primary.

  • Sets of rows read on the secondary may not necessarily be consistent at a given single point in time. For NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

  • Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster (eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or application changes to provide conflict detection. However, careful thought must be given to the schema used, and the access patterns used, to verify that the complete system behaves within specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this is the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less than

CEIL( LOG2( TimeBetweenGlobalCheckpoints / TimeBetweenEpochs ), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively), this gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used for TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small can result in false positives, while one that is too large could lead to excessive wasted space in the database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant exceptions tables, provided that these tables have been defined according to the same exceptions table schema rules as described elsewhere in this section (see NDB$OLD(column_name)). You need to create any exceptions table before creating the table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table (see The ndb_replication system table). The roles of the primary and secondary NDB Clusters in this scenario are fully determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are asymmetric, you must use different values for the primary slave's and secondary slave's server_id entries.

Prior to NDB 7.2.17, conflict between DELETE operations were handled like those for UPDATE operations, and within the same epoch were considered in conflict. In NDB 7.2.17 and later, a conflict between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or NDB$EPOCH_TRANS(), and the relative placement within epochs does not matter. (Bug #18459944)

Conflict detection status variables.  NDB 7.2.1 introduces several status variables that can be used to monitor NDB$EPOCH() and NDB$EPOCH_TRANS() conflict detection. You can see how many rows have been found in conflict by NDB$EPOCH() since this slave was last restarted from the current value of the Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been found directly in conflict by NDB$EPOCH_TRANS(); the number of rows actually realigned, including those affected due to their membership in or dependency on the same transactions as other conflicting rows, is given by Ndb_conflict_trans_row_reject_count.

For more information, see Section, “NDB Cluster Status Variables”.

Limitations on NDB$EPOCH().  The following limitations currently apply when using NDB$EPOCH() to perform conflict detection:

  • Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum time during which concurrent updates to the same data on both clusters always report a conflict. This is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing + TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window size is approximately 200 milliseconds. This minimum window should be considered when looking at expected application race patterns.

  • Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS() functions; from 1 to 32 bits extra space per row is required, depending on the value passed to the function.

  • Conflicts between delete operations may result in divergence between the primary and secondary. When a row is deleted on both clusters concurrently, the conflict can be detected, but is not recorded, since the row is deleted. This means that further conflicts during the propagation of any subsequent realignment operations will not be detected, which can lead to divergence.

    Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row should be updated transactionally with such deletes and any inserts that follow them, so that conflicts can be tracked across row deletes. This may require changes in applications.

  • Only two NDB Clusters in a circular active-active configuration are currently supported when using NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

  • Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB$EPOCH_TRANS().

NDB$EPOCH_TRANS().  NDB$EPOCH_TRANS() extends the NDB$EPOCH() function, and, like NDB$EPOCH(), is available beginning with NDB 7.2.1. Conflicts are detected and handled in the same way using the primary wins all rule (see NDB$EPOCH() and NDB$EPOCH_TRANS()) but with the extra condition that any other rows updated in the same transaction in which the conflict occurred are also regarded as being in conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows on the secondary, NDB$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also regarded as being in conflict, these dependencies being determined by the contents of the secondary cluster's binary log. Since the binary log contains only data modification operations (inserts, updates, and deletes), only overlapping data modifications are used to determine dependencies between transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in addition requires that Version 2 binary log row events are used (--log-bin-use-v1-row-events equal to 0), which adds a storage overhead of 2 bytes per event in the binary log. In addition, all transaction IDs must be recorded in the secondary's binary log (--ndb-log-transaction-id option), which adds a further variable overhead (up to 13 bytes per row).


Status information.  A server status variable Ndb_conflict_fn_max provides a count of the number of times that a row was not applied on the current SQL node due to greatest timestamp wins conflict resolution since the last time that mysqld was started.

The number of times that a row was not applied as the result of same timestamp wins conflict resolution on a given mysqld since the last time it was restarted is given by the global status variable Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the row that was not used is inserted into an exceptions table, as explained later in this section.

Conflict resolution exceptions table.  To use the NDB$OLD() conflict resolution function, it is also necessary to create an exceptions table corresponding to each NDB table for which this type of conflict resolution is to be employed. This is also true when using NDB$EPOCH() or NDB$EPOCH_TRANS() in NDB 7.2.1 and later. The name of this table is that of the table for which conflict resolution is to be applied, with the string $EX appended. (For example, if the name of the original table is mytable, the name of the corresponding exceptions table name should be mytable$EX.) This table is created as follows:

CREATE TABLE original_table$EX  (
    server_id INT UNSIGNED,
    master_server_id INT UNSIGNED,
    master_epoch BIGINT UNSIGNED,
    count INT UNSIGNED,



    PRIMARY KEY(server_id, master_server_id, master_epoch, count)

The first four columns are required. The names of the first four columns and the columns matching the original table's primary key columns are not critical; however, we suggest for reasons of clarity and consistency, that you use the names shown here for the server_id, master_server_id, master_epoch, and count columns, and that you use the same names as in the original table for the columns matching those in the original table's primary key.

Following these columns, the columns making up the original table's primary key should be copied in the order in which they are used to define the primary key of the original table. The data types for the columns duplicating the primary key columns of the original table should be the same as (or larger than) those of the original columns.

Additional columns may optionally be defined following the copied primary key columns, but not before any of them; any such extra columns cannot be NOT NULL. The exceptions table's primary key must be defined as shown.

The exceptions table must use the NDB storage engine. An example that uses NDB$OLD() with an exceptions table is shown later in this section.


The mysql.ndb_replication table is read when a data table is set up for replication, so the row corresponding to a table to be replicated must be inserted into mysql.ndb_replication before the table to be replicated is created.


The following examples assume that you have already a working NDB Cluster replication setup, as described in Section 18.6.5, “Preparing the NDB Cluster for Replication”, and Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”.

NDB$MAX() example.  Suppose you wish to enable greatest timestamp wins conflict resolution on table test.t1, using column mycol as the timestamp. This can be done using the following steps:

  1. Make sure that you have started the master mysqld with --ndb-log-update-as-write=OFF.

  2. On the master, perform this INSERT statement:

    INSERT INTO mysql.ndb_replication
        VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

    Inserting a 0 into the server_id indicates that all SQL nodes accessing this table should use conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the actual server ID.

    Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT); the server default is used.

  3. Create the test.t1 table:

    CREATE TABLE test.t1 (
        mycol INT UNSIGNED,

    Now, when updates are done on this table, conflict resolution is applied, and the version of the row having the greatest value for mycol is written to the slave.


Other binlog_type options—such as NBT_UPDATED_ONLY_USE_UPDATE should be used to control logging on the master using the ndb_replication table rather than by using command-line options.

NDB$OLD() example.  Suppose an NDB table such as the one defined here is being replicated, and you wish to enable same timestamp wins conflict resolution for updates to this table:

CREATE TABLE test.t2  (
    b CHAR(25) NOT NULL,
    PRIMARY KEY pk (a, b)

The following steps are required, in the order shown:

  1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication table, as shown here:

    INSERT INTO mysql.ndb_replication
        VALUES ('test', 't2', 0, NULL, 'NDB$OLD(mycol)');

    Possible values for the binlog_type column are shown earlier in this section. The value 'NDB$OLD(mycol)' should be inserted into the conflict_fn column.

  2. Create an appropriate exceptions table for test.t2. The table creation statement shown here includes all required columns; any additional columns must be declared following these columns, and before the definition of the table's primary key.

    CREATE TABLE test.t2$EX  (
        server_id SMALLINT UNSIGNED,
        master_server_id INT UNSIGNED,
        master_epoch BIGINT UNSIGNED,
        count BIGINT UNSIGNED,
        b CHAR(25) NOT NULL,
        PRIMARY KEY(server_id, master_server_id, master_epoch, count)
    )   ENGINE=NDB;
  3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using NDB$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication, and there must be an exceptions table in the same database as the table being replicated.

User Comments
Sign Up Login You must be logged in to post a comment.