In MySQL, a table may contain traditional relational data, JSON
      values, or both. You can combine traditional data with JSON
      documents by storing the documents in columns having a native
      JSON data type.
    
      Examples in this section use the city table in the
      world_x schema.
The city table has five columns (or fields).
+---------------+------------+-------+-------+---------+------------------+ | Field | Type | Null | Key | Default | Extra | +---------------+------------+-------+-------+---------+------------------+ | ID | int(11) | NO | PRI | null | auto_increment | | Name | char(35) | NO | | | | | CountryCode | char(3) | NO | | | | | District | char(20) | NO | | | | | Info | json | YES | | null | | +---------------+------------+-------+-------+---------+------------------+
        To insert a document into the column of a table, pass to the
        values() method a well-formed JSON document
        in the correct order. In the following example, a document is
        passed as the final value to be inserted into the Info column.
      
mysql-py> db.city.insert().values(
None, "San Francisco", "USA", "California", '{"Population":830000}')You can issue a query with a search condition that evaluates document values in the expression.
mysql-py> db.city.select(["ID", "Name", "CountryCode", "District", "Info"]).where(
"CountryCode = :country and Info->'$.Population' > 1000000").bind(
'country', 'USA')
+------+----------------+-------------+----------------+-----------------------------+
| ID   | Name           | CountryCode | District       | Info                        |
+------+----------------+-------------+----------------+-----------------------------+
| 3793 | New York       | USA         | New York       | {"Population": 8008278}     |
| 3794 | Los Angeles    | USA         | California     | {"Population": 3694820}     |
| 3795 | Chicago        | USA         | Illinois       | {"Population": 2896016}     |
| 3796 | Houston        | USA         | Texas          | {"Population": 1953631}     |
| 3797 | Philadelphia   | USA         | Pennsylvania   | {"Population": 1517550}     |
| 3798 | Phoenix        | USA         | Arizona        | {"Population": 1321045}     |
| 3799 | San Diego      | USA         | California     | {"Population": 1223400}     |
| 3800 | Dallas         | USA         | Texas          | {"Population": 1188580}     |
| 3801 | San Antonio    | USA         | Texas          | {"Population": 1144646}     |
+------+----------------+-------------+----------------+-----------------------------+
9 rows in set (0.01 sec)- See Working with Relational Tables and Documents for more information. 
- See Section 13.5, “The JSON Data Type” for a detailed description of the data type.