Documentation Home
MySQL 8.4 Reference Manual
Related Documentation Download this Manual
PDF (US Ltr) - 40.0Mb
PDF (A4) - 40.1Mb
Man Pages (TGZ) - 259.1Kb
Man Pages (Zip) - 366.2Kb
Info (Gzip) - 4.0Mb
Info (Zip) - 4.0Mb


MySQL 8.4 Reference Manual  /  ...  /  Estimating Query Performance

10.8.5 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) / log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a 500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by log N. As long as everything is cached by the OS or the MySQL server, things become only marginally slower as the table gets bigger. After the data gets too big to be cached, things start to go much slower until your applications are bound only by disk seeks (which increase by log N). To avoid this, increase the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size system variable. See Section 7.1.1, “Configuring the Server”.