This topic describes how to generate recommendations for similar users.
For known users, the output includes a list of predicted users that have similar behavior and taste.
The predictions are expressed in cosine similarity, and range from 0, very dissimilar, to 1, very similar.
For a new user, there is no information to provide a prediction. This generates an error.
Review and complete the following tasks:
When you run
ML_PREDICT_TABLE
or
ML_PREDICT_ROW
to generate similar user recommendations, a default value of
three similar users are recommended. To change this value,
set the topk
parameter.
-
If not already done, load the model. You can use the session variable for the model that is valid for the duration of the connection. Alternatively, you can use the model handle previously set. For the option to set the user name, you can set it to
NULL
.The following example uses the session variable.
mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
The following example uses the model handle.
mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);
-
Make predictions for the test dataset by using the
ML_PREDICT_TABLE
routine.mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);
Replace
table_name
,model_handle
, andoutput_table_name
with your own values. Addoptions
as needed.The following example runs
ML_PREDICT_TABLE
on the testing dataset previously created and sets thetopk
parameter to 2, so only two similar users are generated.mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.similar_user_recommendations', JSON_OBJECT('recommend', 'users_to_users', 'topk', 2));
Where:
recommendation_data.testing_dataset
is the fully qualified name of the input table that contains the data to generate predictions for (database_name.table_name
).@model
is the session variable for the model handle.recommendation_data.similar_user_recommendations
is the fully qualified name of the output table with recommendations (database_name.table_name
).JSON_OBJECT('recommend', 'users_to_users', 'topk', 2)
sets the recommendation task to recommend similar users. A maximum of two similar users is set.
-
Query the output table to review the top two similar users generated for each user in the output table.
mysql> SELECT * from similar_user_recommendations; +---------+---------+--------+---------------------------------------------------------------------------+ | user_id | item_id | rating | ml_results | +---------+---------+--------+---------------------------------------------------------------------------+ | 1 | 2 | 4.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}} | | 1 | 4 | 7.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}} | | 1 | 6 | 1.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}} | | 1 | 8 | 3.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}} | | 10 | 18 | 1.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}} | | 10 | 2 | 6.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}} | | 10 | 5 | 3.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}} | | 10 | 6 | 5.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}} | | 2 | 1 | 5.0 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}} | | 2 | 3 | 8.0 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}} | | 2 | 5 | 2.5 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}} | | 2 | 7 | 6.5 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}} | | 3 | 18 | 7.0 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} | | 3 | 2 | 3.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} | | 3 | 5 | 6.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} | | 3 | 8 | 2.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} | | 4 | 1 | 5.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}} | | 4 | 3 | 8.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}} | | 4 | 6 | 2.0 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}} | | 4 | 7 | 5.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}} | | 5 | 12 | 5.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}} | | 5 | 2 | 7.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}} | | 5 | 4 | 1.5 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}} | | 5 | 6 | 4.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}} | | 6 | 3 | 6.0 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}} | | 6 | 5 | 1.5 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}} | | 6 | 7 | 4.5 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}} | | 6 | 8 | 7.0 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}} | | 7 | 1 | 6.5 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}} | | 7 | 4 | 3.0 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}} | | 7 | 5 | 5.5 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}} | | 7 | 9 | 8.0 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}} | | 8 | 2 | 8.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}} | | 8 | 4 | 2.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}} | | 8 | 6 | 5.0 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}} | | 8 | 9 | 3.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}} | | 9 | 1 | 5.0 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}} | | 9 | 3 | 8.0 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}} | | 9 | 7 | 2.5 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}} | | 9 | 8 | 5.5 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}} | +---------+---------+--------+---------------------------------------------------------------------------+ 40 rows in set (0.0414 sec)
Review the recommended similar users in the
ml_results
column next touser_id
. For example, for user 1, users 3 and 5 are the top users predicted to be most similar. Review the similarity values in theml_results
column next tosimilarity
to review the how similar each user is. For example, user 3 has a similarity value of 0.7922 to user 1, and user 5 has a similarity value of 0.7238. -
Alternatively, if you do not want to generate an entire table of similar items, you can run
ML_PREDICT_ROW
to specify a user to recommend similar users for.mysql> SELECT sys.ML_PREDICT_ROW(input_data, model_handle), [options]);
Replace
input_data
andmodel_handle
with your own values. Addoptions
as needed.The following example runs
ML_PREDICT_ROW
and specifies user 1 with a limit of two recommended similar users.mysql> SELECT sys.ML_PREDICT_ROW('{"user_id": "1"}', @model, JSON_OBJECT('recommend', 'users_to_users', 'topk', 2)); +----------------------------------------------------------------------------------------------------------+ | sys.ML_PREDICT_ROW('{"user_id": "1"}', @model, JSON_OBJECT('recommend', 'users_to_users', 'topk', 2)) | +----------------------------------------------------------------------------------------------------------+ | {"user_id": "1", "ml_results": {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}}} | +----------------------------------------------------------------------------------------------------------+ 1 row in set (0.7951 sec)
The similar users of 3 and 5 and similarity values are the same as the one in the output table previously created.
-
Learn how to generate different types of recommendations:
Learn how to Score a Recommendation Model.