After training a regression model, you can query the default model explanation or query new model explanations. You can also generate prediction explanations. Explanations help you understand which features had the most influence on generating predictions.
Feature importance is presented as an attribution value ranging from -1 to 1. A positive value indicates that a feature contributed toward the prediction. A negative value indicates that the feature contributes positively towards one of the other possible predictions.
Complete the following tasks:
After training a model, you can query the default model explanation with the Permutation Importance explainer.
To generate explanations for other model explainers, see Generate Model Explanations and ML_EXPLAIN.
Query the model_explanation
column from
the model catalog and define the model handle previously
created. Update user1
with your own user
name. Use JSON_PRETTY
to view the output
in an easily readable format.
mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG
WHERE model_handle='regression_use_case';
+------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation) |
+------------------------------------------------------------------------------------------------------------------------+
| {
"permutation_importance": {
"id": 0.0257,
"state": 0.0278,
"address": 0.0,
"house_size": 2.3762
}
} |
+------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.000 sec)
Feature importance values display for each column.
After training a model, you can generate a table of
prediction explanations on the
house_price_testing
dataset by using the
default Permutation Importance prediction explainer.
To generate explanations for other model explainers, see Generate Prediction Explanations and ML_EXPLAIN_TABLE.
-
If not already done, load the model. You can use the session variable for the model that is valid for the duration of the connection. Alternatively, you can use the model handle previously set. For the option to set the user name, you can set it to
NULL
.The following example uses the session variable.
mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
The following example uses the model handle.
mysql> CALL sys.ML_MODEL_LOAD('regression_use_case', NULL);
-
Use the
ML_EXPLAIN_ROW
routine to generate explanations for predictions made in the test dataset.mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);
Replace
table_name
,model_handle
, andoutput_table_name
with your own values. Addoptions
as needed.The following example runs
ML_EXPLAIN_ROW
on the testing dataset previously created.mysql> CALL sys.ML_EXPLAIN_TABLE('regression_data.house_price_testing', 'regression_use_case', 'regression_data.regression_explanations', JSON_OBJECT('prediction_explainer', 'permutation_importance'));
Where:
regression_data.house_price_testing
is the fully qualified name of the test dataset.regression_use_case
is the model handle for the trained table.regression_data.regression_explanations
is the fully qualified name of the output table with explanations.permutation_importance
is the selected prediction explainer to use to generate explanations.
-
Query
Notes
andml_results
from the output table to review which column contributed the most against or had the largest impact towards the prediction. You can also review individual attribution values for each column. Use\G
to view the output in an easily readable format.mysql> SELECT Notes, ml_results FROM regression_data.regression_explanations\G *************************** 1. row *************************** Notes: house_size (1400) increased the value the model predicted the most, whereas state (Nevada) reduced the value the model predicted the most ml_results: {"attributions": {"house_size": 101328.28, "state": -1037.94, "id": -300.23}, "predictions": {"price": 534371.5625}, "notes": "house_size (1400) increased the value the model predicted the most, whereas state (Nevada) reduced the value the model predicted the most"} *************************** 2. row *************************** Notes: house_size (1900) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 235996.83, "state": 16140.48, "id": 0.06}, "predictions": {"price": 669040.125}, "notes": "house_size (1900) increased the value the model predicted the most"} *************************** 3. row *************************** Notes: house_size (1600) increased the value the model predicted the most, whereas state (Colorado) reduced the value the model predicted the most ml_results: {"attributions": {"house_size": 79633.12, "state": -1220.23, "id": 5602.78}, "predictions": {"price": 512676.40625}, "notes": "house_size (1600) increased the value the model predicted the most, whereas state (Colorado) reduced the value the model predicted the most"} *************************** 4. row *************************** Notes: house_size (2200) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 361015.72, "state": 9903.62, "id": 12578.75}, "predictions": {"price": 794059.0}, "notes": "house_size (2200) increased the value the model predicted the most"} *************************** 5. row *************************** Notes: house_size (1300) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 31384.31, "state": 226.31, "id": 30184.16}, "predictions": {"price": 489206.0}, "notes": "house_size (1300) increased the value the model predicted the most"} *************************** 6. row *************************** Notes: house_size (1700) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 80747.0, "state": 7330.35, "id": 24427.78}, "predictions": {"price": 534239.8125}, "notes": "house_size (1700) increased the value the model predicted the most"} *************************** 7. row *************************** Notes: house_size (1500) increased the value the model predicted the most, whereas state (Washington) reduced the value the model predicted the most ml_results: {"attributions": {"house_size": 79051.12, "state": -1316.08, "id": 28659.66}, "predictions": {"price": 532543.9375}, "notes": "house_size (1500) increased the value the model predicted the most, whereas state (Washington) reduced the value the model predicted the most"} *************************** 8. row *************************** Notes: house_size (1800) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 245256.83, "state": 8604.06, "id": 12578.75}, "predictions": {"price": 698539.9375}, "notes": "house_size (1800) increased the value the model predicted the most"} *************************** 9. row *************************** Notes: id (9) increased the value the model predicted the most, whereas state (Illinois) reduced the value the model predicted the most ml_results: {"attributions": {"house_size": -0.03, "state": -0.03, "id": 21232.22}, "predictions": {"price": 454275.5}, "notes": "id (9) increased the value the model predicted the most, whereas state (Illinois) reduced the value the model predicted the most"} *************************** 10. row *************************** Notes: house_size (2100) increased the value the model predicted the most ml_results: {"attributions": {"house_size": 339783.47, "state": 10981.75, "id": 12411.04}, "predictions": {"price": 794059.0}, "notes": "house_size (2100) increased the value the model predicted the most"}
To generate prediction explanations for one or more rows of data, see Generate Prediction Explanations for a Row of Data.
Learn how to Score a Regression Model.