The following list describes thread State
        values that are associated with general query processing and not
        more specialized activities such as replication. Many of these
        are useful only for finding bugs in the server.
- This occurs when the thread creates a table (including internal temporary tables), at the end of the function that creates the table. This state is used even if the table could not be created due to some error. 
- The server is in the process of executing an in-place - ALTER TABLE.
- The thread is calculating a - MyISAMtable key distributions (for example, for- ANALYZE TABLE).
- The thread is checking whether the server has the required privileges to execute the statement. 
- The thread is performing a table check operation. 
- The thread has processed one command and is preparing to free memory and reset certain state variables. 
- The thread is flushing the changed table data to disk and closing the used tables. This should be a fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use. 
- committing alter table to storage engine- The server has finished an in-place - ALTER TABLEand is committing the result.
- The thread is converting an internal temporary table from a - MEMORYtable to an on-disk table.
- The thread is processing an - ALTER TABLEstatement. This state occurs after the table with the new structure has been created but before rows are copied into it.- For a thread in this state, the Performance Schema can be used to obtain about the progress of the copy operation. See Section 29.12.5, “Performance Schema Stage Event Tables”. 
- If a statement has different - ORDER BYand- GROUP BYcriteria, the rows are sorted by group and copied to a temporary table.
- The server is copying to a temporary table in memory. 
- The server is copying to a temporary table on disk. The temporary result set has become too large (see Section 10.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing the temporary table from in-memory to disk-based format to save memory. 
- The thread is processing - ALTER TABLE ... ENABLE KEYSfor a- MyISAMtable.
- The thread is processing a - SELECTthat is resolved using an internal temporary table.
- The thread is creating a table. This includes creation of temporary tables. 
- The thread is creating a temporary table in memory or on disk. If the table is created in memory but later is converted to an on-disk table, the state during that operation is - Copying to tmp table on disk.
- The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and saving columns and offsets to be used for deleting from the other (reference) tables. 
- deleting from reference tables- The server is executing the second part of a multiple-table delete and deleting the matched rows from the other tables. 
- The thread is processing an - ALTER TABLE ... DISCARD TABLESPACEor- ALTER TABLE ... IMPORT TABLESPACEstatement.
- This occurs at the end but before the cleanup of - ALTER TABLE,- CREATE VIEW,- DELETE,- INSERT,- SELECT, or- UPDATEstatements.- For the - endstate, the following operations could be happening:- Writing an event to the binary log 
- Freeing memory buffers, including for blobs 
 
- The thread has begun executing a statement. 
- The thread is executing statements in the value of the - init_commandsystem variable.
- The thread has executed a command. This state is usually followed by - cleaning up.
- The server is preparing to perform a natural-language full-text search. 
- This occurs before the initialization of - ALTER TABLE,- DELETE,- INSERT,- SELECT, or- UPDATEstatements. Actions taken by the server in this state include flushing the binary log and the- InnoDBlog.
- Someone has sent a - KILLstatement to the thread and it should abort next time it checks the kill flag. The flag is checked in each major loop in MySQL, but in some cases it might still take a short time for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the other thread releases its lock.
- The thread is trying to lock a system table (for example, a time zone or log table). 
- The thread is writing a statement to the slow-query log. 
- The initial state for a connection thread until the client has been authenticated successfully. 
- The server is enabling or disabling a table index. 
- The thread is trying to open a system table (for example, a time zone or log table). 
- The thread is trying to open a table. This is should be very fast procedure, unless something prevents opening. For example, an - ALTER TABLEor a- LOCK TABLEstatement can prevent opening a table until the statement is finished. It is also worth checking that your- table_open_cachevalue is large enough.- For system tables, the - Opening system tablesstate is used instead.
- The server is performing initial optimizations for a query. 
- This state occurs during query optimization. 
- The server is preparing to execute an in-place - ALTER TABLE.
- The thread is removing unneeded relay log files. 
- This state occurs after processing a query but before the - freeing itemsstate.
- The server is reading a packet from the client. 
- The query was using - SELECT DISTINCTin such a way that MySQL could not optimize away the distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all duplicated rows before sending the result to the client.
- The thread is removing an internal temporary table after processing a - SELECTstatement. This state is not used if no temporary table was created.
- The thread is renaming a table. 
- The thread is processing an - ALTER TABLEstatement, has created the new table, and is renaming it to replace the original table.
- The thread got a lock for the table, but noticed after getting the lock that the underlying table structure changed. It has freed the lock, closed the table, and is trying to reopen it. 
- The repair code is using a sort to create indexes. 
- The thread has completed a multithreaded repair for a - MyISAMtable.
- The repair code is using creating keys one by one through the key cache. This is much slower than - Repair by sorting.
- The thread is rolling back a transaction. 
- For - MyISAMtable operations such as repair or analysis, the thread is saving the new table state to the- .MYIfile header. State includes information such as number of rows, the- AUTO_INCREMENTcounter, and key distributions.
- The thread is doing a first phase to find all matching rows before updating them. This has to be done if the - UPDATEis changing the index that is used to find the involved rows.
- Sending data- This state is now included in the - Executingstate.
- The server is writing a packet to the client. 
- The thread is beginning an - ALTER TABLEoperation.
- The thread is doing a sort to satisfy a - GROUP BY.
- The thread is doing a sort to satisfy an - ORDER BY.
- The thread is sorting index pages for more efficient access during a - MyISAMtable optimization operation.
- For a - SELECTstatement, this is similar to- Creating sort index, but for nontemporary tables.
- The first stage at the beginning of statement execution. 
- The server is calculating statistics to develop a query execution plan. If a thread is in this state for a long time, the server is probably disk-bound performing other work. 
- The thread has called - mysql_lock_tables()and the thread state has not been updated since. This is a very general state that can occur for many reasons.- For example, the thread is going to request or is waiting for an internal or external system lock for the table. This can occur when - InnoDBwaits for a table-level lock during execution of- LOCK TABLES. If this state is being caused by requests for external locks and you are not using multiple mysqld servers that are accessing the same- MyISAMtables, you can disable external system locks with the- --skip-external-lockingoption. However, external locking is disabled by default, so it is likely that this option has no effect. For- SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).- For system tables, the - Locking system tablesstate is used instead.
- The thread is getting ready to start updating the table. 
- The thread is searching for rows to update and is updating them. 
- The server is executing the first part of a multiple-table update. It is updating only the first table, and saving columns and offsets to be used for updating the other (reference) tables. 
- The server is executing the second part of a multiple-table update and updating the matched rows from the other tables. 
- The thread is going to request or is waiting for an advisory lock requested with a - GET_LOCK()call. For- SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).
- The thread has invoked a - SLEEP()call.
- FLUSH TABLES WITH READ LOCKis waiting for a commit lock.
- The thread is waiting for a transaction to commit versus other parts of query processing. 
- The thread got a notification that the underlying structure for a table has changed and it needs to reopen the table to get the new structure. However, to reopen the table, it must wait until all other threads have closed the table in question. - This notification takes place if another thread has used - FLUSH TABLESor one of the following statements on the table in question:- FLUSH TABLES,- tbl_name- ALTER TABLE,- RENAME TABLE,- REPAIR TABLE,- ANALYZE TABLE, or- OPTIMIZE TABLE.
- The thread is executing - FLUSH TABLESand is waiting for all threads to close their tables, or the thread got a notification that the underlying structure for a table has changed and it needs to reopen the table to get the new structure. However, to reopen the table, it must wait until all other threads have closed the table in question.- This notification takes place if another thread has used - FLUSH TABLESor one of the following statements on the table in question:- FLUSH TABLES,- tbl_name- ALTER TABLE,- RENAME TABLE,- REPAIR TABLE,- ANALYZE TABLE, or- OPTIMIZE TABLE.
- The server is waiting to acquire a - THR_LOCKlock or a lock from the metadata locking subsystem, where- lock_typeindicates the type of lock.- This state indicates a wait for a - THR_LOCK:- Waiting for table level lock
 - These states indicate a wait for a metadata lock: - Waiting for event metadata lock
- Waiting for global read lock
- Waiting for schema metadata lock
- Waiting for stored function metadata lock
- Waiting for stored procedure metadata lock
- Waiting for table metadata lock
- Waiting for trigger metadata lock
 - For information about table lock indicators, see Section 10.11.1, “Internal Locking Methods”. For information about metadata locking, see Section 10.11.4, “Metadata Locking”. To see which locks are blocking lock requests, use the Performance Schema lock tables described at Section 29.12.13, “Performance Schema Lock Tables”. 
- A generic state in which the thread is waiting for a condition to become true. No specific state information is available. 
- The server is writing a packet to the network.