ML_EXPLAIN_TABLE
explains predictions for an entire table of unlabeled data and
saves results to an output table. It limits explanations to the
100 most relevant features.
ML_EXPLAIN_TABLE
is a very memory-intensive process. We recommend using the
batch_size
option to limit operations to
batches of 10 to 100 rows by splitting large tables into
smaller tables. For tables with over ten columns, we suggest
a batch_size
value of
10
.
A call to
ML_EXPLAIN_TABLE
can include columns that were not present during
ML_TRAIN
.
A table can include extra columns, and still use the
MySQL HeatWave AutoML model. This allows side by side comparisons of
target column labels, ground truth, and explanations in the
same table.
ML_EXPLAIN_TABLE
ignores any extra columns, and appends them to the results.
A loaded model and trained with the appropriate prediction
explainer is required to run
ML_EXPLAIN_TABLE
.
See
Generate
Prediction Explanations for a Table.
The output table includes a primary key:
If the input table has a primary key, the output table will have the same primary key.
If the input table does not have a primary key, the output table will have a new primary key column that auto increments. The name of the new primary key column is
_4aad19ca6e_pk_id
. The input table must not have a column with the name_4aad19ca6e_pk_id
that is not a primary key.
ML_EXPLAIN_TABLE
does not support recommendation, anomaly detection, and topic
modeling models. A call with one of these models produces an
error.
mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);
options: {
JSON_OBJECT("key","value"[,"key","value"] ...)
"key","value": {
['prediction_explainer', {'permutation_importance'|'shap'}|NULL]
['batch_size', 'N']
}
}
Set the following required parameters.
table_name
: Specifies the fully qualified name of the input table (database_name.table_name
). The input table should contain the same feature columns as the table used to train the model. If the target column is included in the input table, it is not considered when generating prediction explanations.model_handle
: Specifies the model handle or a session variable containing the model handle. See Work with Model Handles.output_table_name
: Specifies the table where explanation data is stored. A fully qualified table name must be specified (database_name.table_name
). If the table already exists, an error is returned.
Set the following options as needed.
-
prediction_explainer
: The name of the prediction explainer that you have trained for this model usingML_EXPLAIN
.permutation_importance
: The default prediction explainer.shap
: The SHAP prediction explainer, which produces feature importance values based on Shapley values.
batch_size
: The size of each batch. You can set a value between 1 and 100. For tables with over ten columns, we recommend a value of10
.
-
The following example generates explanations for a table of data with the default Permutation Importance prediction explainer. The
ML_EXPLAIN_TABLE
call specifies the fully qualified name of the table to generate explanations for, the session variable containing the model handle, and the fully qualified output table name.mysql> CALL sys.ML_EXPLAIN_TABLE('census_data.census_train', @census_model, 'census_data.census_train_permutation', JSON_OBJECT('prediction_explainer', 'permutation_importance'));
To view
ML_EXPLAIN_TABLE
results, query the output table. TheSELECT
statement retrieves explanation data from the output table. The table includes the primary key,_4aad19ca6e_pk_id
, and theml_results
column, which usesJSON
format:mysql> SELECT * FROM census_train_permutation LIMIT 3; +-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | _4aad19ca6e_pk_id | age | workclass | fnlwgt | education | education-num | marital-status | occupation | relationship | race | sex | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | age_attribution | education-num_attribution | marital-status_attribution | education_attribution | hours-per-week_attribution | relationship_attribution | race_attribution | sex_attribution | workclass_attribution | fnlwgt_attribution | capital-gain_attribution | Notes | ml_results | +-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | 1 | 37 | Private | 99146 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 1977 | 50 | United-States | >50K | <=50K | -0.1 | -0.08 | -0.05 | -0.05 | -0.03 | -0.03 | 0.02 | -0.02 | 0.01 | 0 | 0 | race (White) had the largest impact towards predicting =50K, whereas age (37) contributed the most against predicting <=50K | {"attributions": {"age": -0.1, "education-num": -0.08, "marital-status": -0.05, "education": -0.05, "hours-per-week": -0.03, "relationship": -0.03, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "race (White) had the largest impact towards predicting <=50K, whereas age (37) contributed the most against predicting <=50K"} | | 2 | 34 | Private | 27409 | 9th | 5 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 50 | United-States | <=50K | <=50K | 0 | 0 | -0.04 | 0.06 | -0.03 | 0.02 | 0.02 | -0.02 | 0.01 | 0 | 0 | education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": -0.04, "education": 0.06, "hours-per-week": -0.03, "relationship": 0.02, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K"} | | 3 | 30 | Private | 299507 | Assoc-acdm | 12 | Separated | Other-service | Unmarried | White | Female | 0 | 0 | 40 | United-States | <=50K | <=50K | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.02 | 0 | 0 | 0 | relationship (Unmarried) had the largest impact towards predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": 0.0, "education": 0.0, "hours-per-week": 0.0, "relationship": 0.03, "race": 0.01, "sex": 0.02, "workclass": 0.0, "fnlwgt": -0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "relationship (Unmarried) had the largest impact towards predicting <=50K"} | +-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+