1#ifndef GIS__HAUSDORFF_DISTANCE_FUNCTOR_H_INCLUDED
2#define GIS__HAUSDORFF_DISTANCE_FUNCTOR_H_INCLUDED
38#include <boost/geometry.hpp>
53 boost::geometry::strategy::andoyer,
54 boost::geometry::srs::spheroid<double>>>
A Cartesian 2d linestring.
Definition: geometries_cs.h:71
A Cartesian 2d multilinestring.
Definition: geometries_cs.h:602
A Cartesian 2d multipoint.
Definition: geometries_cs.h:501
A Cartesian 2d point.
Definition: geometries_cs.h:47
The base class of all functors that takes two geometry arguments.
Definition: functor.h:165
A geographic (ellipsoidal) 2d linestring.
Definition: geometries_cs.h:125
A geographic (ellipsoidal) 2d multilinestring.
Definition: geometries_cs.h:661
A geographic (ellipsoidal) 2d multipoint.
Definition: geometries_cs.h:552
A geographic (ellipsoidal) 2d point.
Definition: geometries_cs.h:58
Abstract superclass for all geometric objects.
Definition: geometries.h:100
HausdorffDistance functor that calls Boost.Geometry with the correct parameter types.
Definition: hausdorff_distance_functor.h:50
double eval(const Geometry *g1, const Geometry *g2) const
Definition: hausdorff_distance.cc:59
double operator()(const Geometry *g1, const Geometry *g2) const override
Definition: hausdorff_distance.cc:54
std::unique_ptr< boost::geometry::strategy::distance::geographic< boost::geometry::strategy::andoyer, boost::geometry::srs::spheroid< double > > > m_geographic_strategy
Definition: hausdorff_distance_functor.h:55
Hausdorff_distance(double major, double minor)
Definition: hausdorff_distance.cc:48
This file contains the superclasses for GIS functors.
This file declares the geometry class hierarchy used by the server as the internal representation of ...
std::conditional_t< !std::is_array< T >::value, std::unique_ptr< T, detail::Deleter< T > >, std::conditional_t< detail::is_unbounded_array_v< T >, std::unique_ptr< T, detail::Array_deleter< std::remove_extent_t< T > > >, void > > unique_ptr
The following is a common type that is returned by all the ut::make_unique (non-aligned) specializati...
Definition: ut0new.h:2439