Documentation Home
MySQL 5.7 Reference Manual
Related Documentation Download this Manual Excerpts from this Manual

MySQL 5.7 Reference Manual  /  ...  /  Limits on InnoDB Tables

14.5.7 Limits on InnoDB Tables


Do not convert MySQL system tables in the mysql database from MyISAM to InnoDB tables. This is an unsupported operation. If you do this, MySQL does not restart until you restore the old system tables from a backup or re-generate them with the mysql_install_db program.


It is not a good idea to configure InnoDB to use data files or log files on NFS volumes. Otherwise, the files might be locked by other processes and become unavailable for use by MySQL.

Maximums and Minimums

  • A table can contain a maximum of 1017 columns (raised in MySQL 5.6.9 from the earlier limit of 1000). Virtual generated columns are included in this limit.

  • A table can contain a maximum of 64 secondary indexes.

  • By default, an index key for a single-column index can be up to 767 bytes. The same length limit applies to any index key prefix. See Section 13.1.11, “CREATE INDEX Syntax”. For example, you might hit this limit with a column prefix index of more than 255 characters on a TEXT or VARCHAR column, assuming a UTF-8 character set and the maximum of 3 bytes for each character. When the innodb_large_prefix configuration option is enabled, this length limit is raised to 3072 bytes, for InnoDB tables that use the DYNAMIC and COMPRESSED row formats.

    Attempting to use an index prefix length that is greater than the allowed maximum value produces an error. To avoid such errors for replication configurations, avoid setting the innodb_large_prefix option on the master if it cannot also be set on the slaves, and the slaves have unique indexes that could be affected by this limit.

  • The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072 bytes. This limit applies to the length of the combined index key in a multi-column index.

  • If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option when creating the MySQL instance, the maximum length of the index key is lowered proportionally, based on the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is 1536 bytes when the page size is 8KB, and 768 bytes when the page size is 4KB.

  • The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT), is slightly less than half of a database page for 4KB, 8KB, 16KB, and 32KB page sizes. For example, the maximum row length for the default innodb_page_size of 16KB is about 8000 bytes. For an InnoDB page size of 64KB, the maximum row length is about 16000 bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT columns, must be less than 4GB.

    If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page, variable-length columns are chosen for external off-page storage until the row fits within half a page, as described in Section 14.9.2, “File Space Management”.

  • Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a row-size limit of 65,535 for the combined size of all columns:

    mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
        -> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
        -> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
    ERROR 1118 (42000): Row size too large. The maximum row size for the
    used table type, not counting BLOBs, is 65535. You have to change some
    columns to TEXT or BLOBs

    See Section C.10.4, “Limits on Table Column Count and Row Size”.

  • On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB itself, but if you require a large tablespace, you will need to configure it using several smaller data files rather than one large data file.

  • The combined size of the InnoDB log files can be up to 512GB.

  • The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size is four billion database pages (64TB). This is also the maximum size for a table.

  • The default database page size in InnoDB is 16KB. You can lower the page size to 8KB or 4KB by specifying the innodb_page_size option when creating the MySQL instance.


    Prior to MySQL 5.7.6, increasing the page size is not a supported operation. There is no guarantee that InnoDB will function normally with a page size greater than 16KB. Problems compiling or running InnoDB may occur. In particular, ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the page size is at most 16KB and uses 14-bit pointers.

    As of MySQL 5.7.6, 32KB and 64KB page sizes are supported but ROW_FORMAT=COMPRESSED is still unsupported for page sizes greater than 16KB. For both 32KB and 64KB page sizes, the maximum record size is 16KB. For innodb_page_size=32k, extent size is 2MB. For innodb_page_size=64k, extent size is 4MB.

    A MySQL instance using a particular InnoDB page size cannot use data files or log files from an instance that uses a different page size. This limitation could affect restore or downgrade operations using data from MySQL 5.6, which does support page sizes other than 16KB.

Restrictions on InnoDB Tables

  • ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW INDEX output) by doing random dives to each of the index trees and updating index cardinality estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE could produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100% accurate because it does not take all rows into account.

    You can make the statistics collected by ANALYZE TABLE more precise and more stable by turning on the innodb_stats_persistent configuration option, as explained in Section, “Configuring Persistent Optimizer Statistics Parameters”. When that setting is enabled, it is important to run ANALYZE TABLE after major changes to indexed column data, because the statistics are not recalculated periodically (such as after a server restart) as they traditionally have been.

    You can change the number of random dives by modifying the innodb_stats_persistent_sample_pages system variable (if the persistent statistics setting is turned on), or the innodb_stats_transient_sample_pages system variable (if the persistent statistics setting is turned off).

    MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good enough for your particular tables, you can use FORCE INDEX with your queries to force the use of a particular index, or set the max_seeks_for_key system variable to ensure that MySQL prefers index lookups over table scans. See Section 5.1.4, “Server System Variables”, and Section B.5.6, “Optimizer-Related Issues”.

  • If statements or transactions are running on a table and ANALYZE TABLE is run on the same table followed by a second ANALYZE TABLE operation, the second ANALYZE TABLE operation is blocked until the statements or transactions are completed. This behaviour occurs because ANALYZE TABLE marks the currently loaded table definition as obsolete when ANALYZE TABLE is finished running. New statements or transactions (including a second ANALYZE TABLE statement) must load the new table definition into the table cache, which cannot occur until currently running statements or transactions are completed and the old table definition is purged. Loading multiple concurrent table definitions is not supported.

  • SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical size reserved by the table. The row count is only a rough estimate used in SQL optimization.

  • InnoDB does not keep an internal count of rows in a table because concurrent transactions might see different numbers of rows at the same time. To process a SELECT COUNT(*) FROM t statement, InnoDB scans an index of the table, which takes some time if the index is not entirely in the buffer pool. To get a fast count, you have to use a counter table you create yourself and let your application update it according to the inserts and deletes it does. If an approximate row count is sufficient, SHOW TABLE STATUS can be used. See Section 8.5, “Optimizing for InnoDB Tables”.

  • On Windows, InnoDB always stores database and table names internally in lowercase. To move databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and tables using lowercase names.

  • An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by making the column the first column of some table index.

  • InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column while initializing a previously specified AUTO_INCREMENT column on a table.

    With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode where the lock is obtained and held to the end of the current SQL statement while accessing the auto-increment counter. Other clients cannot insert into the table while the AUTO-INC table lock is held. The same behavior occurs for bulk inserts with innodb_autoinc_lock_mode=1. Table-level AUTO-INC locks are not used with innodb_autoinc_lock_mode=2. For more information, See Section 14.5.5, “AUTO_INCREMENT Handling in InnoDB”.

  • When you restart the MySQL server, InnoDB may reuse an old value that was generated for an AUTO_INCREMENT column but never stored (that is, a value that was generated during an old transaction that was rolled back).

  • When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation returns a duplicate-key error. This is general MySQL behavior, similar to how MyISAM works.

  • DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

  • Cascaded foreign key actions do not activate triggers.

  • You cannot create a table with a column name that matches the name of an internal InnoDB column (including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). The server reports error 1005 and refers to error −1 in the error message. This restriction applies only to use of the names in uppercase.

Locking and Transactions

  • LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if some records of the tables are being locked by other transactions.

    In MySQL 5.7, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

  • All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1 mode because the acquired InnoDB table locks would be released immediately.

  • You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an implicit COMMIT and UNLOCK TABLES.

  • The limit on data-modifying transactions is now 96 * 1023 concurrent transactions that generate undo records. As of MySQL 5.7.2, 32 of 128 rollback segments are assigned to non-redo logs for transactions that modify temporary tables and related objects. This reduces the maximum number of concurrent data-modifying transactions from 128K to 96K. The 96K limit assumes that transactions do not modify temporary tables. If all data-modifying transactions also modify temporary tables, the limit is 32K concurrent transactions.

Download this Manual
User Comments
Sign Up Login You must be logged in to post a comment.